A prospective study on vascular diseases in patients with haemophilia 2 years evaluation

P.R. van der Valk¹, M. Makris 3, R.C. Tait 4, P. Chowdary 5, P.W., Collins 6, K. Meijer 7, R.E.G. Schutgens 1, K. Fischer 1, 2, E.P. Mauser-Bunschoten 1 1. Van Creveldkliniek, Department of Haematology, University Medical Center Utrecht, NL. 3. Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, UK. 4. Glasgow Haemophilia and Thrombosis Centre, Royal Infirmary, Glasgow, UK. 5. Katharine Dormandy Haemophilia Centre and Haemostasis Unit, Royal Free Hospital, London, UK. 6. Arthur Bloom Haemophilia Centre, School of Medicine, Cardiff University and University Hospital of Wales, Cardiff, UK. 7. Division of Haemostasis and Thrombosis, Department of Haematology, University Medical Centre Groningen, Groningen, NL.

Introduction

Cardiovascular disease (CVD) mortality is reported to be lower in haemophilia patients than in the general population, but reports on non-fatal CVD are lacking. To appreciate the effect of haemophilia on CVD risk, it is important to know the incidence of CVD compared to the general population. In the general population the cardiovascular risk can be assessed with several predication algorithms, like QRISK, Framingham and SCORE. Earlier we reported an unfavorable QRISK-risk profile in people with hemophilia compared to the general population^{1.}

Methods

A prospective multicenter observational study for the incidence of cardiovascular disease was started. For this 2 years follow up data on CVD incidence of haemophilia patients (aged 30 years at inclusion) from The Netherlands and the UK were collected. The incidence of CVD was compared to the expected incidence based on the QRISK2 – 2011 cardiovascular risk score. This score can be used in persons aged 30-84 years, without a history of CVD or use of statins. It calculates the risk for a subset of cardiovascular diseases: myocardial infarction, angina, coronary heart disease, stroke, and transient ischaemic stroke. Furthermore all the other cardiovascular events in the 2 year follow up were recorded.

Results

Baseline characteristics and CVD risk factors of the 709 participating patients are shown in Table 1. Of which 661 evaluable datasets are available for the current review (flowchart). At 2 years evaluation 557 of these 661 had a calculable QRISK score, Incalculable scores were due to high age, statin treatment or a history of cardiovascular disease. In the patient group with a calculable QRISK score, the median 2 years risk was 9,0% (SD 10,8), inferring an expected 9.5 CVD events during 2 years of follow up. In this group 4 events developed (table 2), compared to the expected 9,5 events... In the group without a calculable score 4 QRISK events developed (table 3). Other CVD events (n=14) in both groups are described in table 4. Mostly atrial fibrillation. The mortality is shown in table 5, which shows a mortality of 8 patients in 2 years, mostly due to malignancy.

Table 2 – events in patients with calculable QRISK 2011

QRISK-events	Age	QRISK 2y	QRISK 10y
Ischaemic heart disease	65	3,8	20,6
Ischaemic stroke	48	0,8	4,5
Ischaemic heart disease	47	2,4	13,6
Intracranial haemorrhage	77	4,2	22,6

References::

1 Fransen van de Putte DE, Fischer K, Makris M, et al. Unfavourable cardiovascular disease risk profiles in a cohort of Dutch and British haemophilia patients. Thromb Haemost. 2013;109:16–23

Flowchart

Table 3 – events in patient without calculable QRISK 2011

Table 4 – Other cardiovascular events

Other cardiovascular even Atrial fibrillation (n= 8) Rhytm disorder (n= 3) Aortic Valve pathology (n= Pericarditis (n = 1)Plaque carotid a. (n=1)

Table 5	–Mortality

nts	Mortality in the 2 year follow up	age
	Epileptic convulsion	34
	Hepatic cellular carcinoma 7	76
=1)	Hepatic cellular carcinoma 6	58
	Lung carcinoma 8	33
	Malignancy	33
	Intracranial Haemorrhage	39
	Intracranial Haemorrhage 6	65
	Not reported 3	36

Conclusion:

Table 1 CVD Study popula	General population	
Number included	709	
Age at inclusion in years	49,8	
Haemophilia A	84%	
Severe Haemophilia	48%	
Risk factors		
Current smoker at inclusion	28%	26%
Hypertension	49%	40%* (38-43)
Heart disease in 1st degree relative < 60 yr	18%	
Diabetes Mellitus	6%	6%
BMI >25	43%	41%
BMI > 30	15%	20% * (19-21)
Total cholesterol > 5.0	44%	68% * (67-70)
QRISK2 score: 2 years risk	1,65	

Table 1 – baseline characteristics

- Our early results show a more than twice lower CVD event rate than expected. The leading cause of death seems to be malignancy related and intra-cranial haemorrhage. Atrial fibrillation is quite common.
- Further analysis of the 5 year data need to follow.

Pa Pa