Reduction in Dosing Frequency and ABRs in Previously Treated Pediatric (<12 years) Patients With Severe Hemophilia A During Prophylactic Treatment With Pegylated Recombinant Factor VIII Compared to Pre-Study Prophylactic Regimen With Other FVIII Concentrates

Eric Mullins,¹ Maria Teresa Alvarez-Roman,² Chur Woo You,³ Bruce Ewenstein,⁴ Werner Engl,⁵ Borislava G. Pavlova,⁵ Jennifer Doralt,⁵ Brigitt Abbuehl⁵ ¹Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Hospital University, Daejeon, South Korea; ^{4*}Shire, Cambridge, MA, United States; ^{5*}Shire, Vienna, Austria

INTRODUCTION

- Prophylactic administration of factor VIII (FVIII) is generally considered the standard of care in patients with severe hemophilia A (FVIII level < 1%), as it has been demonstrated to reduce or prevent bleeding and the risk of developing chronic arthropathy and a reduced quality of life.
- The frequency of prophylactic infusions remains a challenge to patient compliance. The average half-life of FVIII products is in the range of 10 to 14 hours,^{1,2} necessitating 3 infusions per week or 1 infusion every other day to maintain trough FVIII levels \geq 1% of normal to effectively prevent or reduce spontaneous bleeding episodes.³
- Full-length, pegylated, recombinant FVIII (BAX 855, ADYNOVATE) was designed to provide an extended half-life and allow for a reduced frequency of prophylactic infusions. ADYNOVATE is manufactured by covalently binding a branched PEG reagent (molecular weight: 20 kDa) to the licensed rFVIII (ADVATE) with PEG chains predominantly localized to the B-domain of the FVIII molecule.⁴
- In the phase 1 and pivotal phase 2/3 studies, the mean half-life and the mean residence time of ADYNOVATE compared with that of ADVATE were 1.4-to 1.5-fold higher.⁵
- In the pivotal phase 2/3 study in adolescents and adults:
- ADYNOVATE administered twice weekly resulted in an annualized bleeding rate (ABR) reduced by 90.0% compared to that observed during on-demand treatment (P < 0.0001)
- The median ABR was 1.9; 39.6% of compliant subjects had no bleeding episodes and 57.4 % of subjects did not experience any spontaneous or joint bleeding during prophylaxis.⁶

OBJECTIVE

• In this global, open-label phase 3 trial in pediatric PTPs < 12 years, the ABR during study was compared with ABR during pre-study prophylaxis using other FVIII concentrates (including ADVATE).

METHODS

 Previously treated pediatric patients < 12 years with severe hemophilia A and no history of FVIII inhibitors or at screening received twice weekly prophylactic treatment with ADYNOVATE (50 \pm 10 IU/kg) for \geq 6 months or 50 exposure days (EDs).

Figure 1: Subject Disposition Flowchart

* Two subjects counted as Screen Failures were later enrolled (Unique Subject ID 261202-110013 and 261202-511003).

RESULTS

 Table 1: ABRs Before and During Prophylactic Study
Treatment With ADYNOVATE Administered Twice Weekly -Stratified by Prophylactic Treatment Frequency Before Study

	Frequency	Statistic	ABR			
	Prophylactic Treatment With Any FVIII Concentrate Before Study		Before Study	During Study	Difference	
	2x/week	n	15	15	15	
		Mean (SD)	5.60 (3.91)	2.59 (2.05)	-3.01 (4.67)	
		IQR (Q1, Q3)	8.00 (2.00, 10.00)	2.30 (1.70, 4.00)	8.70 (-7.00, 1.70)	
	3x/week	n	33	33	33	
		Mean (SD)	3.91 (5.03)	2.28 (3.41)	-1.63 (5.35)	
		IQR (Q1, Q3)	4.00 (1.00, 5.00)	3.80 (0.00, 3.80)	5.90 (-4.00, 1.90)	

- ABRs were reduced by means of 3.01 and 1.63 in patients receiving 2x/week and 3x/week pre-study prophylactic treatment regimens, respectively (Table 1, Figure 2).
- Few patients had received treatment more than 3x/week pre-study: n = 4 on 3.5x/week and n = 3 on 4x/week.

Figure 2: Mean (SD) ABRs Before Study and During **Prophylactic Study Treatment With ADYNOVATE - Stratified** by Prophylactic Treatment Frequency Before Study

Table 2: ABRs Before Study and During Prophylactic Study Treatment With ADYNOVATE (2x/week) - Stratified by **Product Type Before Study**

	Frequency	Frequency		ABR		
Product	Before Study	During Study	Statistic	Before Study	During Study	Difference
		2x/week	n	11	11	11
Full longth E\/III	2x/wook		Mean (SD)	5.64 (4.15)	2.00	-4.00
run-iengui rvin	ZX/WEEK		IQR (Q1, Q3)	8.00 (2.00, 10.00)	2.30 (1.70, 4.00)	8.70 (-7.00, 1.70)
	2x/week	2x/week	n	3	3	3
Plasma-derived			Mean (SD)	7.00 (2.65)	2.00	-4.00
FVIII			IQR (Q1, Q3)	5.00 (5.00, 10.00)	3.90 (0, 3.90)	8.90 (-10.00, - 1.10)
		k 2x/week	n	27	27	27
	0		Mean (SD)	4.11 (5.40)	1.90	-1.00
Full-length Fvill	3X/Week		IQR (Q1, Q3)	4.00 (1.00, 5.00)	3.90 (0, 3.90)	6.20 (-4.20, 2.00)
	3x/week	2x/week	n	2	2	2
Plasma-derived			Mean (SD)	4.5 (4.95)	0	-4.50
FVIII			IQR	7.00	0	7.000
			(Q1, Q3)	(1.00, 8.00)	(0, 0)	(-8.00, -1.00)
	3x/week	2x/week	n	4	4	4
B-domain			Mean (SD)	2.25 (2.06)	0	-2.00
deleted FVIII			IQR	3.50	1.90	5.40
			(Q1, Q3)	(0.50,4.00)	(0, 1.90)	(-4.00, 1.40)

- Most subjects with pre-study prophylactic schedule of 2 or 3 infusions per week had received full-length FVIII (FL-FVIII) products (n = 38), whereas a total of 10 subjects had received plasma-derived (pd-FVIII; n = 5) or B-domain deleted FVIII (BDD-FVIII; n = 5) products.
- Mean and median ABRs were lower during prophylactic treatment with ADYNOVATE compared to all pre-study treatment methods (Table 2, Figure 3).

Figure 3: Mean ABRs (SD) Before Study and During Prophylactic Study Treatment With ADYNOVATE -Stratified by Frequency Before Study

• Among the 48 subjects with a pre-study prophylactic schedule of 2 or 3 infusions per week, 50.0% had not been treated previously with ADVATE. • Patients experienced a reduction of bleeding episodes during the study irrespective of their historical treatment status (Table 3, Figure 4).

SUMMARY

CONCLUSION

DISCLOSURES

- 000742 30.
- now part of Shire.

• The majority of subjects were able to reduce dosing frequency by at least one prophylactic infusion per week compared to pre-study treatment while using ADYNOVATE.

• The mean total ABR decreased for those previously treated 2x/week from 5.60 to 2.60, and for those previously treated 3x/week from 3.91 to 2.28 during prophylactic treatment with ADYNOVATE.

Twice weekly prophylactic infusions with ADYNOVATE resulted in fewer bleeding episodes compared with pre-study prophylactic treatment while reducing the frequency of infusions in the majority of pediatric patients, indicating improved efficacy of ADYNOVATE prophylaxis.

REFERENCES

Björkman S, Folkesson A, Jönsson S. Pharmacokinetics and dose requirements of factor VIII over the age range 3–74 years: a population analysis based on 50 patients with long-term prophylactic treatment for haemophilia A. *Eur J Clin Pharmacol*. 2009;65(10):989-998.

Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535-544.

Committee for Medicinal Products for Human Use. Guideline on core SmPC for human plasma derived and recombinant coagulation factor VIII products. EMEA/CHMP/BMWP/1619/1999 rev.1. 5-24-2012. London, European Medicines Agency (EMEA-EMA).

Turecek PL, Bossard MJ, Graninger M, et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. *Hamostaseologie*. 2012;32(Suppl 1):S29-S38.

Turecek PL, Bossard MJ, Graninger M, et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. *Hamostaseologie*. 2012;32(Suppl 1):S29-S38.

Konkle BA, Stasyshyn O, Chowdary P, Bevan DH, Mant T, Shima M, Engl W, Dyck-Jones J, Fuerlinger M, Patrone L, Ewenstein B, Abbuehl B. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. *Blood*. 2015 Aug 27;126(9):1078-85.

EM, MTA-R, and CWY were investigators in this study, which was sponsored by Baxalta, now part of Shire. WE, BP, JD and BA are full-time employees of Baxalta, now part of Shire, which sponsored the study.

The study was registered at www.clinicaltrials.gov <http://www.clinicaltrials.gov/> as NCT02210091 and at www.clinicaltrialsregister.eu under EudraCT Number 2014

*Author an employee of Baxalta (⁴Baxalta US Inc; ⁵Baxalta Innovations GmbH),

Poster 79

