WFH 2016 Hemostasis tests and assays 73-PP-M

A validated patient-specific numerical model of thrombin generation for the management of hemophilia

Pierre Chelle ^(1, 2, 3), Claire Morin ^(1, 2, 3), Michèle Piot ^(2, 3), Aurélie Montmartin ^(2, 3), Edouard Ollier ^(2, 3), Michel Cournil ^(1, 2, 3), Brigitte Tardy ^(2, 3)

⁽¹⁾ Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France – ⁽²⁾ INSERM, U1059, F-42000 Saint Etienne, France - ⁽³⁾ Université de Lyon, SAINBIOSE, F-42000 Saint Etienne, France

INTRODUCTION AND OBJECTIVES

• Thrombin Generation (TG) = test assessing the coagulation phenotype \rightarrow Use TG as target for hemophilic treatment

- Build a mathematical model that predicts the TG from the concentrations of coagulation factors
- Use this model to individualize the hemophilic treatment

Simplified scheme of the coagulation cascade representing the pattern of reactions of the model

- Kinetic laws as $v(x) = \frac{V_{max} x}{K + x}$ with **K** and **V**max kinetic parameters and x the reactant concentration
- The model involves 11 parameters
- 8 population parameters (fixed)
- 3 patient-specific parameters

Assay

- Good agreement between prediction and experiment: Comparison on the 112 TG curves : $\rightarrow R^2 = 0.950$
- Errors of prediction on ETP:
- Mean relative error on ETP = 7,29 %
- 75 % of predicted TG with relative error on ETP < 10%
- Experimental uncertainties on the factors concentrations taken into account \rightarrow Confidence intervals

Contact: Pierre Chelle, +33 4 77 42 66 24 ; pierre.chelle@mines-stetienne.fr

