
# BOP CO

# Robust Fed-Batch Manufacturing Process of Long Acting Factor VIIa (MOD-5014) in CHO Cells

Laura Moschcovich, Miri Zakar, Yana Felikman, Rachel Guy, and Oren Hershkovitz. OPKO Biologics, Nes Ziona, Israel

#### INTRODUCTION AND OBJECTIVE

- **OPKO Biologics** is a clinical-stage public company developing long-acting therapeutic proteins utilizing **CTP** technology. The technology involves fusion of the C-terminus peptide of human chorionic gonadotropin (hCG), a highly O-glycosylated peptide, to the target protein.
- One of the unmet needs in the coagulation field is to improve the relevant pharmacokinetic parameters. CTP was utilized to generate a long-acting human factor VIIa (FVIIa) (MOD-5014) that is produced in a CHO stable cell line, and is being developed to support a bi-weekly injection for on demand and prophylactic treatment of hemophilia A and B patients.
- Objective: develop a fed batch upstream process by recombinant DNA technology using CHO cells in a chemically defined medium, followed by a reproducible and scalable downstream process purifying the highly glycosylated and highly-gamma carboxylated MOD-5014.



## **METHODS**

- The cDNA of MOD-5014 was transfected into CHO cells and stable clones were generated by limiting dilution steps. Highest producing clones were amplified and final clone was selected for further development.
- Comprehensive process development program included media and feed screening followed by process parameters optimization.
- The downstream process was developed to purify and activate FVIIa-CTP with the highest content of gamma carboxylation and effectively remove process and product relates impurities.
- The quality of MOD- 5014 was tested by applying various analytical methods, including:
  - O-glycans and sialic acid content
  - Oxidative related forms
  - Potency by STA-CLOT
  - % of Gla domainless
  - % of non-activated FVII

#### **Production Procedure**

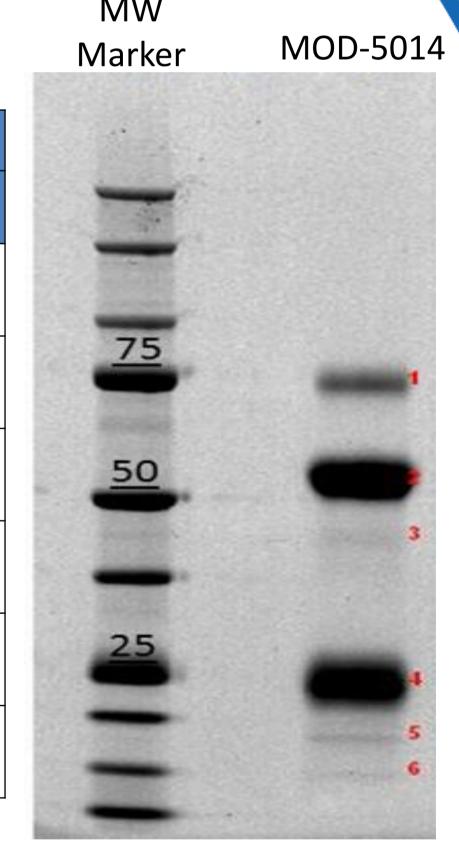
#### **Upstream**:

Stable clone of CHO cells expressing MOD-5014 is inoculated into 1000 or 2000 L bioreactors, in serum free chemically defined media, and grown in a fed-batch approach, supplemented with vitamin K.

#### Downstream:

- Purification process is based on 4 chromatographic columns. The protein is purified on affinity chromatography, mixed mode chromatography, hydrophobic interaction step, and activated on an anion exchange column. the process also contain a virus-inactivation and Nano filtration steps.
- The downstream process is capturing and purifying the highly-gamma carboxylated, highly glycosylated MOD-5014. The process has high capacity for removal of process related impurities and results in high product quality.

| MOD-5014 Production |
|---------------------|
| Scheme              |
| Vial Thaw           |
| Seed train          |
| Production BR       |
| Purification        |
| Virus reduction     |
| Activation          |
| Formulation         |


# **Quality Attributes**

- Highly sialylated and highly Gamma-carboxylated drug substance is obtained at the end of the production process.
- Reduced SDS-PAGE analysis shows the following protein bands: 75kDa- non activated form (1) 55kDa- heavy chain-CTP (2)

25kDa- light chain (4)

LMW forms (3, 5 and 6).

| Method                | CMO-1  |        | CMO-2  |        |
|-----------------------|--------|--------|--------|--------|
|                       | ER     | GMP1   | GMP1   | GMP2   |
| Potency (U/mg)        | 15,563 | 16,720 | 22,478 | 23,608 |
| Non activated FVII    | 2.7    | 2.4    | 2.6    | 3.0    |
| Oxidized forms (%)    | 4.0    | 4.9    | 2.9    | 3.9    |
| Gla domainless (%)    | 5.4    | 5.5    | 0.6    | 0.6    |
| Sialic acid (mol/mol) | 17.1   | 17.1   | 18.4   | 17.2   |
| O-Glycans (mol/mol)   | 12.3   | 13.2   | 13.2   | 12.5   |



### CONCLUSIONS

- A reproducible fed-batch manufacturing process was developed for the production of highly glycosylated long acting FVIIa-CTP (MOD-5014).
- High content levels of O-Glycans and Sialic Acid and low levels of non-activated FVII were obtained.
- Further development is on going to optimize MOD-5014 quality attributes.