Effect of Moderate Intensity Exercise on Hemostatic Capacity in Adults with Hemophilia A and B: Pilot Study

S. Mahamad ${ }^{1}$, H. Chaudhry², N. O'Neill ${ }^{1}$, G. Foros ${ }^{3}$, J.E. Scnneiderman ${ }^{4}$, W. Kahr5,6, M Rand ${ }^{5,6,}$, F. Pluthero${ }^{5}$, T. Hossain ${ }^{6}$, J. Tseng ${ }^{1}$, M. Sithganesan¹, R. Nisenbaum ${ }^{7,8}$, C.

 Zhang ${ }^{6}$, K. Whitney ${ }^{6}$, J. Teitel ${ }^{9}$, M. Carcao ${ }^{5,6}$, M. Sholzberg ${ }^{1,2,7,9}$INTRODUCTION

- Impact of exercise on both primary and secondary hemostasis has been well defined in individuals without an inherited coagulation defect ${ }^{1}, 2,3$ We are evolutionarily designed to enhance thrombin generation in response to stress
- A recent study by our group showed that exercise improves hemostatic capacity in boys with hemophilia and that this response was particularly strong post-puberty ${ }^{4}$

OBJECTIVES

Primary Objective:
To determine whether exercise affects hemostatic parameters in men (18 -65 years) with hemophilia $A(H A)$ and $B(H B)$
Secondary Objective:

- To assess whether the response varies according to age in adulthood

METHODS

- 13 HA and 9 HB patients were recruited from St. Michael's Hospital Hemophilia Clinic
- Study procedures were conducted at the Physiological Research Unit (PRU) of the Hospital for Sick Children (HSC)
- Samples for the following tests were collected pre-exercise, 5 minutes post-exercise, and 1 hour post-exercise: complete blood count (CBC), activated partial thromboplastin time (aPTT), factor VIII activity (FVIII:C), factor IX activity (FIX:C), VWF antigen (VWF:Ag), VWF ristocetin cofactor activity (VWF:RCo), platelet function analyzer (PFA-100®), thrombin generation time, and thromboelastography (TEG)
- Primary outcome variables: FVIII:C and VWF antigen (VWF:Ag)

Eligibility Criteria

Inclusion criteria

-Male (18-65 years) with HA (FVIII $\leq 10 \%$) or HB (FIX $\leq 10 \%$)

Exclusion criteria

-Positive FVIII or FIX inhibitor within past 5 years
-Co-existence of congenital bleeding disorder other than hemophilia (e.g VWD)
-Concurrently enrolled in study investigating extended half-life coagulation factor product
-Prior history of CAD (or positive ECG) or pulmonary disease - Regular beta-blocker, anti-platelet, or NSAID use

- Active infection or inflammatory condition (e.g. HIV, active Hepatitis B or C) or active cigarette smoking
-Bleed in any location within preceding 2 weeks or lower limb musculoskeletal bleed within preceding 4 weeks prior to protocol -Limited exercise tolerance for any reason

METHODS (CONTINUED)
Figure 1. Timeline of Protocol

Statistical Analysis

- Impact of exercise on changes in each clotting parameter over time was evaluated by performing repeated measures analyses under the linear mixed model framework
Statistical significance was defined as a p value of < 0.05
- Bonferroni correction for multiple comparisons was applied to the primary outcome variables VWF:Ag and FVIII:C
- All analyses were separately performed for HA and HB patients using SAS 9.4 RESULTS AND DISCUSSION

Participants

22 subjects recruited: 13HA - 3 mild, 6 moderate, 4 severe, $9 \mathrm{HB}-6$ moderate, 3 severe

- Median age at study participation: HA - 33 years (range 20-55), HB - 37 years (range 18-64)
Mean duration of exercise to achieve 85% MPHR: $10.1(\pm 2.6)$ minutes
- Mean duration of exercise: $14.5(\pm 2.5)$ minutes

Statistically Significant Hemostatic Changes

Baseline vs. 5 Minutes Post-Exercise:

- HA: platelet count ($p<0.0001,15.42 \% ~ \uparrow$), hematocrit ($p=0.0001,4.35 \% \uparrow$), $\frac{\text { HA. platele count (} \mathrm{p}<0.0001,15.42 \% \uparrow \text {), hematocrit }(\mathrm{p}=0.0001,4.35 \% \uparrow \text {), }}{\text { PFA-100 (COL/ADP: } \mathrm{p}<0.0001,28.00 \% \downarrow ; \mathrm{COL} / \mathrm{EPI} \mathrm{p}=0.0004,22.06 \% ~ \downarrow \text {), }}$ aPTT ($p=0.0100,5.45 \% \uparrow$), VWF:Ag ($p<0.0001,32.20 \% \uparrow$), VWF:RCo ($p=0.0018,30.28 \% \uparrow$), F VIII:C $(p=0.0050,60.00 \% \uparrow$)

HB: platelet count ($\mathrm{p}=0.0004,10.66 \% \uparrow$), hematocrit ($\mathrm{p}=0.0182,4.55 \% \uparrow$ PFA-100 (COL/EPI: $\mathrm{p}=0.0015,37.41 \% \downarrow$), VWF:Ag ($p<0.0001,33.33 \% \uparrow$ VWF:RCo ($p=0.0005,44.87 \% \uparrow$), FVIII:C ($p<0.0001,56.90 \% \uparrow$)

RESULTS AND DISCUSSION (CONTINUED)

Statistically Significant Hemostatic Changes (continued)

5 Minutes vs. 1 Hour Post-Exercise:
HA: platelet count ($\mathrm{p}<0.0001,16.79 \% \downarrow$), hematocrit ($\mathrm{p}<0.0001,6.25 \% \downarrow$), VWF:Ag ($\mathrm{p}=0.0012,17.31 \% \downarrow$), VWF:RCo ($p=0.0011,24.65 \% \downarrow$), aPTT ($p=0.0011,6.90 \% \downarrow$), VIII:C ($p=0.0406,25.00 \% \downarrow$)
HB: platelet count ($p<0.0001,12.84 \% \downarrow$), hematocrit ($p=0.0002,6.52 \% \downarrow$), aPTT ($p=0.0053,5.56 \% \downarrow$), VWF:Ag $(p=0.0006,15.00 \% \downarrow)$, FVIII:C $(p=0.0007,18.68 \% \downarrow)$

Baseline vs. 1 Hour Post-Exercise:
VWF:Ag and FVIII:C levels remained significantly elevated for only HB participants ($p=0.0080,13.33 \% \uparrow$ and $p=0.0013,27.59 \% \uparrow$, respectively) (see Figures 2 and 3)

Figure 3. Hemophilia A and B box plots by time for VWF:Ag

Discussion

For the first time, a sustainable increase in VWF:Ag and FVIII:C was found in men with HB in contrast to men with HA
This suggests the possibility of a differential hemostatic response to moderate exercise, which may explain the variation in bleeding phenotype
The study is limited by the small sample size and selection bias (younger, physically fit participants)

REFERENCES

