

INTRODUCTION

- Immune checkpoint inhibition has demonstrated compelling activity in hepatocellular carcinoma (HCC), particularly with augmentation of the immune response by ablative procedures to improve efficacy of single immune checkpoint inhibitors
- The impact of ablation modality (TACE vs **RFA)** in combination with dual immune checkpoint inhibitors with tremelimumab (anti-CTLA4) and durvalumab (anti-PD1) has not been previously described

AIM

Primary objective:

6-month progression free survival (PFS)

Secondary objectives:

 safety and feasibility of this combination treatment

METHOD

Eligibility:

- Advanced or unresectable HCC; progressed on, refused, or been intolerant to sorafenib
- Disease technically amenable to TACE or RFA with at least two measurable lesions
- Child Pugh score of A/B7 if liver cirrhosis present, Barcelona Clinic Liver Cancer (BCLC) stage B or C, ECOG PS of 0 or 1

Table 1

Patient

Loc

Re RFA pa ΤΑϹΕ β

Treatme Receiv As

U

Combined checkpoint inhibition in combination with tumor ablative procedures is a safe and effective treatment strategy for patients with advanced HCC

The addition of ablative therapies may improve patient outcomes

Combined with immunotherapy may represent a therapeutic approach for patients with a contraindication to vascular endothelial growth factor (VEGF) inhibitors for patients with HCC

Further studies are warranted to identify patient populations most likely to respond to these interventions

COMBINATION IMMUNE CHECKPOINT INHIBITION WITH LOCOREGIONAL THERAPIES IN HEPATOCELLULAR CARCINOMA Authors <u>R. WETZEL¹, C. MONGE², C. XIE², D. MABRY², L. AKOTH², B. REDD³, E. LEVY³, B. WOOD³, TF GRETEN²</u>

1 Hematology Oncology, Walter Reed National Military Medical Center 2 Gastrointestinal Malignancies Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health

3 Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health

Table 2

RESULTS

Characteristics		Outcomes	Median OS (m)	Median PFS (m)	
Total patients	30				
Median age	64 (range 19-81)	Combination Immunotherapy alone	19.2	4.9	\$2
cally advanced disease	57%				l ja
BCLC stage C	73%				i gr
Hepatitis C	53%	Combination Immunotherapy and ablation (ITT)	13.6	4.4	å 1
Hepatitis B	17%				- Stu
ceived prior sorafenib	30%	TACE plus immunotherapy	20.5	7.4	1
atients and BCLC stage C	86%	RFA plus immunotherapy	16.5	4.3	
patients and BCLC stage C	71%				1-
		Table 3			0
ent Allocation		Grade 3-4 adverse events			Figure 1 F
ved immunotherapy alone	9	Lymphopenia		43%	
signed to TACE or RFA	21	Increased AST		43% 33%	
nderwent TACE with IT	7	Increased amylase			
nderwent RFA with IT	7	Anemia		30%	

CONCLUSIONS

Dumolard L, Ghelfi J, Roth G, Decaens T, Macek Jilkova Z. Percutaneous Ablation-Induced Immunomodulation in Hepatocellular Carcinoma. Int J Mol Sci. 2020 Jun 20;21(12):4398.

Johnston MP, Khakoo SI. Immunotherapy for hepatocellular carcinoma: Current and future. World J Gastroenterol. 2019;25(24):2977-2989.

Makarova-Rusher, O. V., Medina-Echeverz, J., Duffy, A. G. & Greten, T. F. The yin and yang of evasion and immune activation in HCC. J. Hepatol. 62, 1420–1429 (2015).

REFERENCES

tim.greten@nih.gov Tim Greten, MD

Efficacy data for study population

's plot demonstrating progression free survival for patients ng tremelimumab and durvalumab with RFA or TACE. The ndicate BCLC stage B; all other patients are BCLC stage C. ressive disease, SD= stable disease, PR= partial response

ACKNOWLEDGEMENTS

Our patients, their families, and the entire staff at the National Institutes of Health

CONTACT INFORMATION

rebecca.a.wetzel2.mil@mail.mil; rebecca.wetzel@nih.gov Rebecca Wetzel, DO

Poctor. Possion

BAYER RER

ponsol by: