

VIRTUAL CONFERENCE

Recurrence Risk Reassessment (R3) score based on explant features improves prediction of HCC recurrence compared with existing models

Charlotte Costentin^{1*}, Federico Piñero^{2*}, Helena Degroote³, Andrea Notarpaolo⁴, Ilka F Boin⁵, Karim Boudjema⁶, Cinzia Baccaro⁷, Luis G Podestá^{1,2}, Philippe Bachellier⁸, Giuseppe Maria Ettorre⁹, Jaime Poniachik¹⁰, Fabrice Muscari¹¹, Fabrizio Dibenedetto¹², Sergio Hoyos Duque¹³, Ephrem Salame¹⁴, Umberto Cillo¹⁵, Adrián Gadano¹⁶, Claire Vanlemmens¹⁷, Stefano Fagiuoli¹⁸, Fernando Rubinstein¹⁹, Patrizia Burra²⁰, Hans Van Vlierberghe⁴, Daniel Cherqui²¹, Marcelo Silva², Christophe Duvoux²² and the French-Italian-Belgium and Latin American collaborative group for HCC and liver transplantation.

INTRODUCTION

Patients with hepatocellular carcinoma (HCC) are selected for liver transplantation (LT) based on pre-LT imaging ± AFP level* but discrepancies between imaging and explant findings are frequent

Explant features remain the gold standard to reassess risk of HCC recurrence after LT in order to drive post LT screening strategies and adjustment of immunosuppressive regimen

Previously published explant-based models** of recurrence have intrinsic limitations precluding use generalization in routine practice

Mazzaferro et al. N Engl J Med 1996 *Duvoux et al. Gastroenterology 2012 *Mazzaferro et al. Gastroenterology 2019

**Mazzaferro et al. Lancet Oncol. 2009 **Costentin et al. Liver Intern 2017 **Metha JAMA Oncol 2016

AIM

Design a explant-based user-friendly Recurrence Risk Reassessment score to refine the prediction of recurrence after LT for HCC

METHOD

Multicenter multinational cohort study of adult patients transplanted for HCC in 47 centers between 2000 and 2018.

- European training cohort (TC, n=1359) from France, Italy and Belgium.
- Latin American validation cohort (VC, n=1085) from Argentina, Uruguay, Chile, Brazil, Ecuador, Colombia and Mexico

Pathological tumor features collected across all sites from pathological reports

- Presence of microvascular invasion (MVI) - Number and size of each nodule
- Tumor differentiation according to Edmondson and Steiner criteria

Endpoints:

- Primary: 5-year HCC recurrence after LT - Secondary: 5-year survival

Design of the Recurrence Risk Reassessment (R3) score in the Training European cohort

- Univariate and multivariable Cox model with hazard ratios to evaluate explant features independently associated with HCC recurrence after LT
- Points assigned in the final model dividing each HR with the lowest HR observed
- Model performance assessed using Harrells-c and Somer's D estimations and compared to those of other scores graded on explants Milan (within/Beyond)

Metroticket: Up to seven and no MVI vs all other combination RETREAT: ≤2 OR>2

Validation in the Latin American cohort

Age, years (± Male gender, Etiology of liv

Alco Othe Data at listing

Within Milan c AFP score ≤2 Bridging thera

Median time o Median time fi evaluation and Number of HC 1-3 nodule ≥4 nodule Largest nodul

≤3 cm 3-6 cm >6 cm

Complete maj

Presence mic **Tumor differe** Nuclear c Nuclear c

Explant features associated with HCC recurrence after LT

Training col Number of no

1-3 nodules ≥4 nodules Major nodule

≤3 cm (n=84 3-6 cm (n=3 >6 cm (n=54

Complete nec Yes (n=94) Microvascula Yes (n=990) Nuclear grade

Yes (n=173)

- The models.

RESULTS

Patients and tumor characteristics

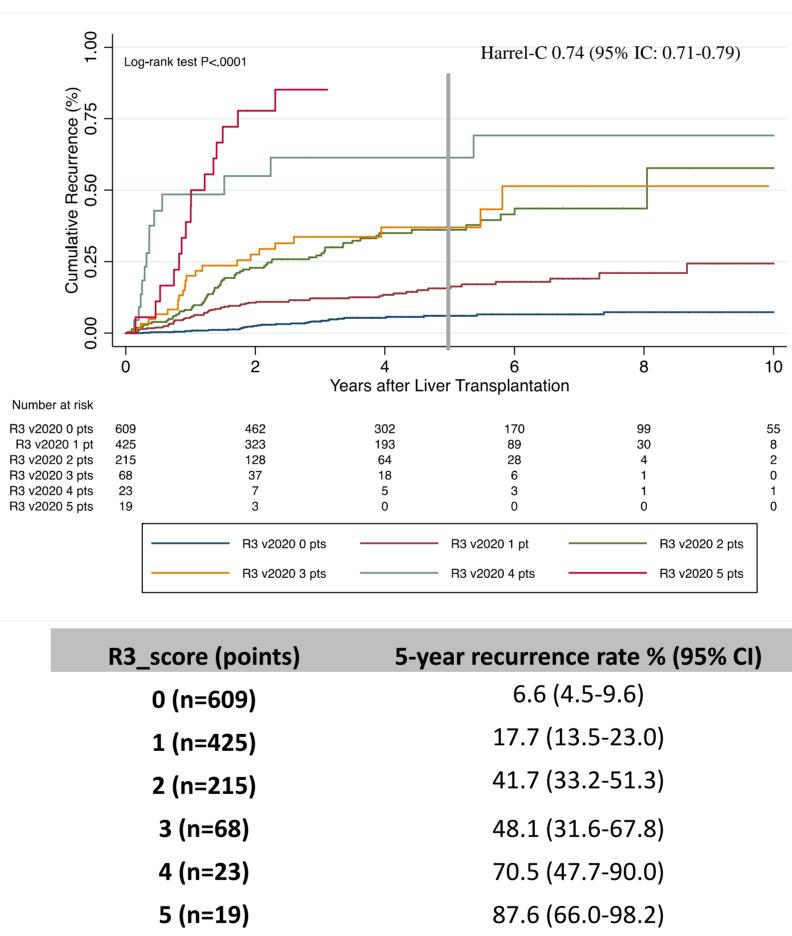
	Training cohort	Validation cohort	Р
	(n=1359)	(n=1085)	Р
SD)	58 ± 8	58 ± 8	0.99
n (%)	1124 (82.7)	844 (77.8)	0.002
ver disease, n (%)			
l i i i i i i i i i i i i i i i i i i i	786 (57.8)	610 (56.2)	
HBV	94 (6.9)	149 (13.7)	
HCV	696 (51.2)	466 (42.9)	
ohol	426 (31.3)	183 (16.9)	
er	147 (10.8)	292 (26.9)	<.0001
2			
criteria, n (%)	1039 (76.4)	939 (86.5)	<.0001
points, n (%)	1221 (89.9)	942 (87.1)	0.66
apy before LT, n (%)	931 (68.5)	782 (72.1)	0.055
on waiting list, months (IQR)	6.1 (3.0-11.0)	4.9 (1.7-10.0)	<.0001
rame between last tumor d LT, months (IQR)	2.2 (1.0-4.0)	2.3 (0.9-5.3)	
CC nodules			
les	1005 (73.9)	911 (84.0)	<.0001
es	354 (26.0)	174 (16.0)	<.0001
le diameter			
	849 (67.1)	633 (59.2)	
	361 (28.6)	398 (37.3)	<.0001
	54 (4.3)	38 (3.5)	
jor nodule necrosis, n (%)	94 (6.9)	11 (1.0)	<.0001
crovascular invasion, n (%)	369 (27.1)	249 (22.9) 0.017	
entiation, n (%)			
grade I-II	1003 (85.3)	753 (73.0)	- 0001
grade >II	173 (14.7)	279 (27.0)	<.0001

hort (TC)	5-year recurrence rate (95% CI)	Unadjusted Hazard Ratio (95% CI)	Р	Adjusted Hazard Ratio (95% CI)	Р
odules		1.03 (1.01-1.04)	<.0001		
s (n=1005)	14.2 (11.7-17.1)	-			
(n=354)	35.7 (29.4-42.9)	2.79 (2.12-3.69)	<.0001	1.77 (1.28-2.43)	<.0001
e diameter		1.37 (1.31-1.44)	<.0001		
49) 261)	13.8 (11.1-17.1)	-	-	-	-
361) 4)	30.4 (24.5.37.7) 74.5 (58.7-87.9)	2.38 (1.76-3.22) 11.01 (7.33-16.55)	<.0001 <.0001	2.00 (1.42-2.82) 6.89 (4.33-10.9)	<.0001 <.0001
crosis	· · ·	· · ·		· · ·	
	2.96 (0.7-11.7)	0.16 (0.05-0.50)	0.002	-	-
ar invasion					
	39.6 (32.9-46.3)	4.07 (3.09-5.38)	<.0001	2.69 (1.94-3.71)	<.0001
e >ll					
	28.2 (21.2-36.9)	1.45 (1.23-1.73)	<.0001	1.18 (0.99-1.41)	0.061
			T		

CONCLUSIONS

Based on a multinational database, we designed and validated a simple and robust R3 score allowing stratification of recurrence risk after LT for HCC into 4 groups.

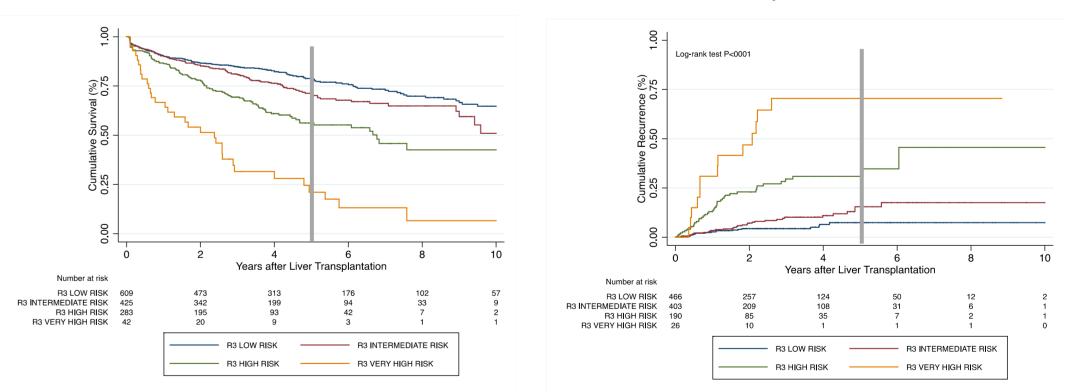
score improves prediction of HCC R3 recurrence compared with other explant-based


• The R3 score can easily be implemented in pathological reports and be proposed as a standardized predictive tool to adjust post-LT surveillance strategies, and as a framework of clinical trials design for adjuvant therapies.

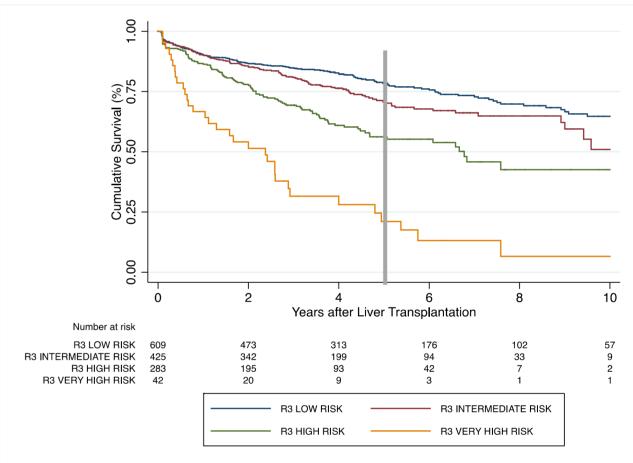
1- Gastroenterology, Hepatology and Transplant Unit, CHU Grenoble-Alpes, Grenoble, France; 2-Hospital Universitario Austral, School of Medicine, Argentina and Latin American Liver Research Educational and Awareness Network (LALREAN). 3-Department of Hepatology and Gastroenterology, Ghent University Hospital, Belgium. 4- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. 5-Hospital das Clinicas UNICAMP Campiñas, Brazil; 6-Department of Hepatobiliary and Digestive Surgery, Pontchaillou Hospital Rennes 1 University, Rennes, France; 7- Lanciano's Hospital, Chieti, Rome, Italy; 8- Digestive Surgery Unit, CHU de Strasbourg, Strasbourg, France; 9-Ospedale San Camillo di Roma, Rome, Italy; 10-Hospital Clínico de la Universidad de Chile, Santiago, Chile; 11- Digestive Surgery and Transplant Unit, Hôpital Rangueil, Toulouse, France; 12- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Department of General Surgery, University of Modena and Reggio Emilia; 13-Hospital Pablo Tobón Uribe y Grupo de Gastrohepatología de la Universidad de Antioquía, Medellín, Colombia; 14-Digestive Surgery Unit, CHU de Tours, Tours, France; 15- Hepatobiliary Surgery and Liver Transplant Unit, Padova University Hospital; 16-Hospital Italiano de Buenos Aires, Argentina; 17-Hepatology Unit, Hôpital Juan Minjoz, Besancon, France; 18- Gastroenterology, Hepatology and Transplantation, Papa Giovanni XXIII Hospital, Bergamo, Italy; 19-Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina. 20- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital; 21- Hospital Paul Brousse, University of Paris, France; 22-Hospital Henri Mondor, University of Paris-Est, Creteil, France,

R3 score (based on Cox model in the TC)

	Adjusted HR	Р	Points
	(95% CI)	-	
Number of nodules			
1-3 nodules (n=1005)			0
≥4 nodules nodules (n=354)	1.77 (1.28-2.43)	<.0001	1
Major nodule diameter			
≤3 cm (n=849)	-	-	0
3-6 cm (n=361)	2.03 (1.50-2.77)	<.0001	1
>6 cm (n=54)	6.89 (4.33-10.9)	<.0001	3
Microvascular invasion			
Yes (n=990)	2.69 (1.94-3.71)	<.0001	1
Absence (n=369)			0


R3 score was associated with an incremental hazard of recurrence for every additional point

AFFILIATIONS



R3 score improves discrimination of HCC recurrence compared to other explant-based models

	Harrell's C (95% CI)	Somers' D (95% CI)	Ρ
	0.75 (0.71-0.78)	0.54 (0.45-0.64)	-
teria	0.64 (0.61-0.68)	0.30 (0.23-0.37)	<.0001
ket	0.70 (0.66-0.72)	0.41 (0.34-0.48)	0.005
score	0.69 (0.67-0.72)	0.41 (0.35-0.48)	0.008

R3 score stratifies survival into 4 groups

External validation of the R3 score

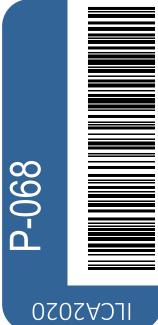
Despite differences in patients and HCC characteristics in the VC compared to the TC, R3 score performed well in the VC, also identifying 4 level of risk for HCC recurrence and survival at 5 years

ACKNOWLEDGEMENTS

To the French-Italian-Belgium and Latin American collaborative group for HCC and liver transplantation (International HCC LT Data base (IHLTDB)"

To all hepatologists, pathologists and radiologists from all participating centers.

This work is dedicated to the memory of Professor Federico


CONTACT INFORMATION

Charlotte Costentin, MD, MPH E-mail: ccostentin@chu-grenoble.fr

