Prospective Evaluation of HCC Surveillance Benefits and Harms in a Cirrhosis Patient Population

BACKGROUND

- The value of cancer screening programs must account benefits (e.g. early tumor detection) and potential har (physical, financial, and psychological)
- Hepatocellular carcinoma (HCC) surveillance is recommended in patients with cirrhosis,
 - Supported by level II data suggesting an association with improved early detection and improved survival
- However, HCC surveillance may be associated with potential harms, e.g. diagnostic testing for false positive or indeterminate screening results, in 15-20% of patients

AIMS

• Prospectively characterize potential benefits and harms of HCC surveillance in a large, racially and socioeconomically diverse cohort of patients with cirrhosis

METHODS

- Prospective cohort study among 803 patients with cirrhosis, of any etiology, followed at Parkland Health and Hospital System, the safety-net health system for Dallas County, between December 2014 and March 2017.
- We identified patients with documented cirrhosis (using ICD-9/ICD-10 code) or suspected cirrhosis (elevated APRI with chronic liver disease).
- Cirrhosis diagnosis was confirmed by chart review, i.e. characteristic imaging (nodular appearing liver with portal hypertension), histology, or a non-invasive marker of fibrosis (e.g. Fibroscan or Fibrotest)
- Excluded patients with Child C cirrhosis, history of HCC, history of liver transplantation, language other than English or Spanish
- We obtained waiver of consent to minimize bias by Hawthorne effect
- Patients followed until death, incident HCC, lost to follow-up, or end of the 18-month study period
- Surveillance benefits were defined as early tumor detection, i.e. BCLC stage 0/A
- Surveillance-related physical harms were defined as CT or MRI scans, biopsies, or other procedures that were performed for evaluation of false positive or indeterminate surveillance results
 - Definition based on nomenclature developed to evaluate screening harms in other cancers, e.g. lung and colon cancer

Amit G. Singal, Sruthi Patibandia, Joseph Obi, Hannah Fullington, Adam C. Yopp, Jorge A Marrero

UT Southwestern Medical Center and Parkland Health and Hospital System, Dallas TX

nt	for	both
rn	ns	

Table 1: Patient Characteristics			
able	Number		
(mean, SD)	56.8 ± 9.4		
der (% male)	493 (61.4)		
e/ethnicity			
n-Hispanic White	240 (29.9)		
spanic White	203 (25.3)		
ick	350 (43.6)		
r Disease Etiology			
patitis C	423 (52.7)		
patitis B	21 (2.6)		
cohol-related	203 (25.3)		
n-alcoholic steatohepatitis	105 (13.1)		
ner/ Unknown	51 (6.3)		
d Pugh (% Child A)	459 (57.2)		
atology Care year prior	299 (37.2)		
lson Comorbidity			
1	226 (32.2)		
	135 (16.8)		

Table 1: Patient Characteristics		
Variable	Number	
Age (mean, SD)	56.8 ± 9.4	
Gender (% male)	493 (61.4)	
Race/ethnicity		
Non-Hispanic White	240 (29.9)	
Hispanic White	203 (25.3)	
Black	350 (43.6)	
Liver Disease Etiology		
Hepatitis C	423 (52.7)	
Hepatitis B	21 (2.6)	
Alcohol-related	203 (25.3)	
Non-alcoholic steatohepatitis	105 (13.1)	
Other/ Unknown	51 (6.3)	
Child Pugh (% Child A)	459 (57.2)	
Hepatology Care year prior	299 (37.2)	
Charlson Comorbidity		
0 - 1	226 (32.2)	
2	135 (16.8)	
≥3	442 (55.0)	

• During study period, 129 (16.1%) had semi-annual surveillance with ultrasound +/- AFP, 415 (51.7%) some surveillance, and 259 (32.2%) no surveillance or AFP alone

Figure 1: Surveillance Benefits

- HCC diagnosed in 26 patients 16 via surveillance and 10 incidentally or symptomatically
- Early stage detection, (p=0.69), curative treatment receipt (p=1.0), and 2-year survival (p=0.83) did not differ between surveillance and incidental/symptomatic presentation

RESULTS				
acteristics	Figure 2			
Number	9.0%			
56.8 ± 9.4	8.0%			
493 (61.4)	7.0%			
	6.0%			
240 (29.9)	5.0%			
203 (25.3)	4.0%			
350 (43.6)				
	3.0%			
423 (52.7)	2.0%			
21 (2.6)	1.0%			
203 (25.3)	0.0%			
105 (13.1)	Benefit			
51 (6.3)	Physical harms observed			
459 (57.2)	• Ultrasound had fewer fa			
200(27.2)	adda of physical harman			

with $\geq 1 \text{ AFP} - \text{all mild in nature}$

Incidental Findings

- early stage (BCLC stage 0/A)
- physical harms
- most appear to be of low clinical significance

Acknowledgement: Study was funded by NCI R01 CA12008, AHRQ R24HS022418, and U01 CA230694

UTSouthwestern Medical Center

2: Surveillance Harms

d in 54 (8.8%) of patients

alse positive results than AFP but higher odds of physical harms (OR 3.7, 95%CI 1.9 – 7.2).

• Harm observed in 43 (7.9%) of 544 patients with ≥ 1 US - 34 mild and 9 moderate – compared to 11 (2.1%) of 518 patients

• Of those with \geq surveillance test, 40 (6.5%) found to have total of 53 incidental findings -23 (57.5%) of low clinical importance and 17 (42.5%) of medium importance

• Incidental findings prompted repeat imaging for 25 patients but none required invasive work-up (endoscopy, biopsy, surgery)

CONCLUSION

• Surveillance associated with high proportion of early HCC detection, with two-thirds of screen-detected patients found at an

• Although 20% of patients had a false positive surveillance result, less than 10% of patients experienced surveillance-related

• Surveillance imaging can lead to incidental findings, although

• Multi-center studies over longer periods of time are needed to characterize surveillance value in patients with cirrhosis.

ဟ Singal

