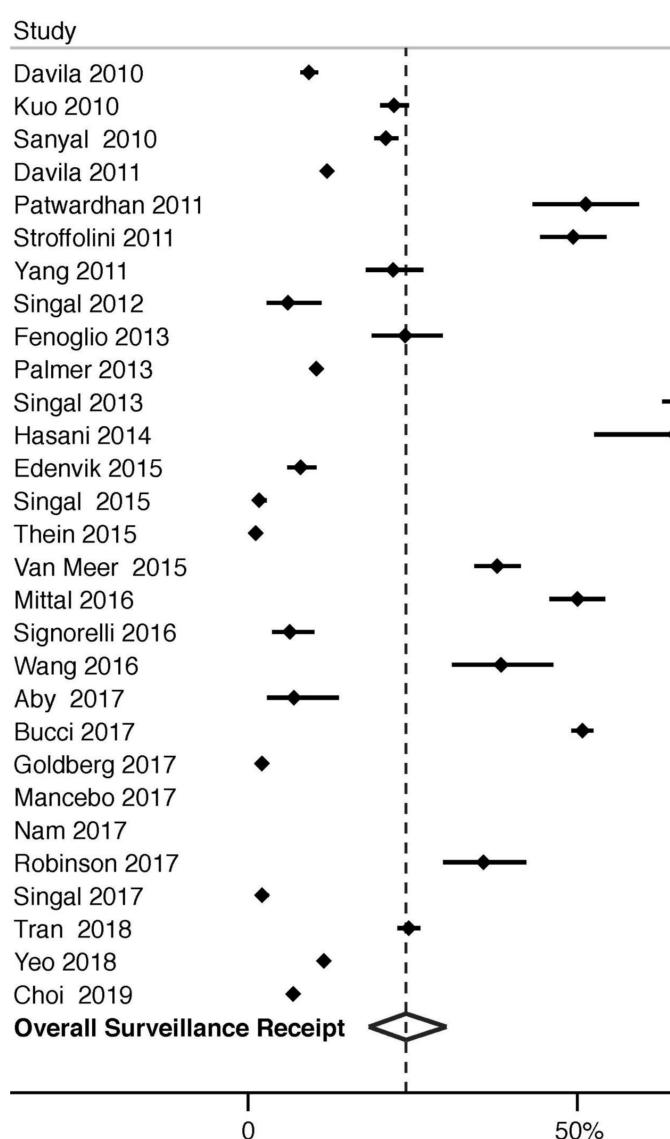
Utilization of Hepatocellular Carcinoma Surveillance in Patients with Cirrhosis: A Systematic Review and Meta-Analysis

BACKGROUND

- Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer related death worldwide.
- Studies have demonstrated an association between receipt of HCC surveillance and improved survival.
- Prior studies have demonstrated that only a minority of patients with cirrhosis undergo HCC surveillance
- Lower surveillance rates have been attributed to poor provider knowledge of surveillance guidelines, under-recognition of liver disease, and patientreported barriers.

AIMS

• Quantify HCC surveillance utilization in patients with cirrhosis, examine socio-demographic correlates of HCC surveillance, and summarize intervention efforts to increase surveillance receipt


METHODS

- We conducted a search with Medline from January 2010- August 2018 with keyword combinations: [screen\$ or surveillance or detect\$ or diagnosis] AND [liver ca\$ or hepatocellular ca\$ or hcc or hepatoma].
- We searched relevant conference abstracts from 2017 and 2018, performed manual searches of references from relevant articles and consulted expert hepatologists to identify additional references or unpublished data.
- Inclusion criteria included cohort studies that described receipt of surveillance in patients with cirrhosis. Excluded studies characterized receipt of one-time screening and those utilizing patient survey or selfreported methodology.
- Surveillance receipt was defined as the proportion of patients with repeated imaging and/or AFP prior to HCC diagnosis.
- We collected data regarding study period, region, population of interest, surveillance definition and interval, duration of follow-up, and potential correlates of surveillance receipt.
- We recorded a description of the intervention and surveillance receipt in the intervention and control groups for studies assessing interventions to increase surveillance receipt.
- We assessed the risk of bias for each study using a modified Newcastle-Ottawa scale.
- Primary outcome was HCC surveillance rates among patients with cirrhosis.
- Weighed pooled estimate of overall surveillance and subgroup analysis was computed.

Erin Wolf, Nicole E. Rich, Jorge A. Marrero, Neehar Parikh, Amit G. Singal

University of Texas Southwestern Medical Center, Dallas, Texas; University of Michigan, Ann Arbor, MI

Figure 1: Pooled Surveillance Utilization

- Lowest surveillance observed among U.S. studies vs. Europe and Asia (17.8% vs. 43.2% vs. 34.6%, p<0.001)
- Highest surveillance noted in cohorts from Gastroenterology and Hepatology clinics vs. those followed by subspecialty and primary care, or populationbased cohort studies (73.7% vs. 29.5% vs. 8.8%, p<0.001)

Table 1	: Corre	elates o	of Survei	illance	Utilizat	tion
Author, year	Age	Gender	Race	Alcohol abuse	NAFLD	Hepatology care
Davila 2010						+
Davila 2011	- (<50)	NS	– (Black)	_	_	
Patwardhan 2011	NS	NS	NS	NS	NS	+
Singal 2012	NS	NS	NS	_	NS	+
Fenoglio 2013				_	_	
Palmer 2013	NS	+ (F)	NS			
Singal 2013	NS	NS	NS	NS		
Hasani 2014	NS	NS		NS	NS	NS
Edenvik 2015	NS	NS			_	
Singal 2015	NS	+ (M)	NS	NS	—	
Thein 2015	NS	NS		—	NS	
Wang 2016	NS	NS				
Goldberg 2017	+(older)		– (Black)	—	—	
Mancebo 2017	NS	NS		_		
Robinson 2017		NS	NS		+	
Singal 2017	NS	NS	NS	—	_	+
Tran 2018	+ (>54)	NS	+ (Asian)	NS		

RESULTS

12,728 citations found \rightarrow 855 abstracts reviewed \rightarrow 69 full texts reviewed \rightarrow 29 surveillance + 7 intervention articles

	Surveillance Receipt (95% CI)
	9.2 (8.0 - 10.6)
	22.1 (20.0 - 24.4)
	20.9 (19.1 - 22.8)
	12.0 (11.3 - 12.7)
	51.3 (43.2 - 59.4)
	49.4 (44.4 - 54.4)
	22.0 (17.9 - 26.6)
	6.0 (2.8 - 11.2)
	23.8 (18.7 - 29.5)
	10.4 (9.5 - 11.2)
	67.6 (62.9 - 72.2)
+	64.8 (52.5 - 75.8)
	8.0 (5.9 - 10.4)
	1.7 (0.9 - 2.8)
	1.1 (0.7 - 1.8)
	37.8 (34.4 - 41.4)
	50.0 (45.8 - 54.2)
	6.3 (3.7 - 10.1)
	38.4 (30.9 - 46.3)
	6.9 (2.8 - 13.8)
	50.8 (49.1 - 52.4)
	2.1 (1.9 - 2.3)
-	76.8 (73.6 - 79.7)
—	81.5 (77.4 - 85.2)
	35.7 (29.6 - 42.2)
	2.1 (1.3 - 3.1)
	24.4 (22.7 - 26.2)
	11.5 (11.2 - 11.8)
	6.8 (6.4 - 7.3)
	24.0 (18.4 - 30.1)

- Consistently positive correlates were number of clinic visits and receipt of hepatology subspecialty care
- Lower surveillance observed in patients with NASH or alcohol-related cirrhosis than other etiologies

Table 2: Implemented Interventions and Outcomes								
Author Year	Intervention	Outcome	Pre- Intervention	Post- Intervention	Absolute Difference			
Aberra 2013	Nurse base protocol	One-time abdominal imaging	119/160 (74.4%)	331/355 (93.2%)	18.8%			
Kennedy 2013	PCP patient education, system redesign	Semi- annual US + AFP for 2 years	0/22 (0%)	14/22 (63.6%)	63.6%			
Beste 2015	EMR Reminder	≥2 abdominal imaging in 18 months	103/564 (18.2%)	218/790 (27.6%)	9.4%			
Del Poggio 2015	PCP Education	HCC diagnosed by surveillance	85/244 (34.8%)	105/190 (55.3%)	20.5%			
Nazareth 2016	Nurse-led clinic	Semi-annual US	_	40/76 (52.6%)	_			
Farrell 2017	Radiology led recall	Semi-annual US	_	368/804 (45.8%)	_			
Bui 2017	Physician3 abdominal imagingextenderin 2 years		51/224 (22.8%)	183/224 (81.7%)	58.9%			
Singal 2019	Mailed outreach	Semi-annual US in 18 months	44/600 (7.3%)	247/1200 (20.6%)	13.3%			

- HCC surveillance continues to be underutilized, with only 1 in 4 patients with cirrhosis receiving surveillance.
- Surveillance underuse is more prominent in patients with non-viral cirrhosis and those followed by primary care providers or outside academic centers.
- and outreach can improve HCC surveillance rates.

Acknowledgement: Support from National Institute of Health U01 CA230694 and U01 CA230669

UTSouthwestern Medical Center

• Both in-reach and outreach interventions appear to increase HCC surveillance utilization in patients with cirrhosis – including those followed in academic centers with high baseline surveillance receipt

CONCLUSION

• Interventions utilizing provider and patient education, reminder systems,

Staging ogy, Singal

