

sequencing options in advanced hepatocellular Treatment preliminary data from a single-center retrospective carcinoma: cohort

Authors: I. PECORA¹, F. SALANI¹, C. VIVALDI^{1,2}, I. BARGELLINI³, L. CROCETTI³, S. CESARIO¹, F. OLIVERI⁴, V. MASSA¹, P. DE SIMONE⁵, V. ROMAGNOLI⁴, S. CATANESE¹, G. CATALANO⁵, M.R. BRUNETTO⁴, E. VASILE¹, L. BERNARDINI¹, M. CACCESE¹, M. LENCIONI¹, L. FORNARO¹, A. FALCONE^{1,2}, G. MASI¹.

1. Department of Medical Oncology, Pisa University Hospital, Pisa, Italy; 2. Department of Translational Research and New Surgical and Medical Technologies, Pisa, Italy; 3. Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Pisa, Italy; 4. Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy; 5. Hepatobiliary Surgery and Liver Transplantation Unit, Pisa University Hospital, Pisa, Italy.

INTRODUCTION

- The treatment scenario of advanced HCC (aHCC) has been widened by the availability of new tyrosine-kinase inhibitors (TKI) [1-3], antiangiogenics oncological (IO) drugs [5,6].
- ❖ Today a sequential strategy is possible; however, how to individualize first and further lines' options is still unclear.

AIM

Our aim is to describe and compare progressionfree (PFS) and overall survival (OS) of sequential systemic treatments in aHCC.

RESULTS

- Among 77 enrolled patients: in 1L, 68 patients (88.3%) received sorafenib (Sor) and 9 (11.7%) IO, with an mPFS1 of 8.2 vs 3.1 mo (p=0.005) and mOS of 26.3 vs 15.7 mo (p=0.12), respectively; in 2L, among patients treated with Sor, 28 (41.2%) received TKI (25 regorafenib, 3 cabozantinib), 34 (50.0%) CT (capecitabine and/or cyclophosphamide) and 6 (8.8%) IO (anti-PD1 agents), while all patients treated with IO received Sor as 2L.
- ❖ 4 sequential approaches were identified: A) Sor-TKI, B) Sor-CT, C) Sor-IO, D) IO-Sor, reporting an mPFS1+2 of 17.2 (A), 10.0 (B), 14.2 (C) and 7.8 (D) mo (p=0.008), and mOS of 26.3 (A), 19.8 (B), 22.6 (C) and 15.7 (D) mo (p=0.34).
- * mPFS2 didn't seem to be influenced by mPFS1, neither in Sor nor in IO-starting sequences (all p>0.05).
- ❖ A better OS2 was reported in who achieved a PFS1 longer than median value, with a statistically significance in Sor group (10.4 vs 5.7 mo, p=0.03) and a trend in IO one (8.5 vs 7.7 mo, p=0.067).
- ❖ Uni- and multivariate survival correlations with baseline features were run for all sequences; Sor-TKI and IO-Sor univariate data were detailed in Table1.

	Sorafenib → TKI				IO → Sorafenib			
	mPFS1+2		mOS		mPFS1+2		mOS	
	n	months (95% CI)	n	months (95% CI)	n	months (95% CI)	n	months (95% CI)
Overall, months (95% CI)	28	17.2 (12.6 - 21.8)	28	26.3 (19.2 - 41.2)	9	7.7 (5.4 - 10.7)	9	15.7 (10.7 - 19.9)
AFP								
>400	3	4.1 (3.3 - 21.1)	3	20.7 (7.9 - 20.7)	4	6.4 (4.7 - 13.3)	4	10.7 (6.6 - 15.7)
<400	16	21.8 (13.4 - 26.1)	16	29.6 (19.2 - 32.3)	5	10.5 (5.1 - 11.9)	5	19.9 (10.7 - ND)
		p=0.015		p=0.25		P=0.866		P=0.83
ECOG PS								
0	19	15.4 (12.6 - 21.8)	19	26.3 (17.2 - 41.2)	8	7.8 (5.4 - 11.9)	8	15.7 (10.7 - 19.9)
1	9	21.2 (6.3 - 21.9)	9	30.9 (20.7 - 32.3)	1	4.7 (ND)	1	10.7 (ND)
		P=0.77		P=0.65				P=0.28
BCLC score								
В	11	21.1 (14.8 - 21.8)	11	29.6 (26.3 - 66.4)	3	10.7 (7.8 - 13.3)	3	15.7 (15.7 - 15.7)
С	17	13.4 (8.6 - 21.8)	17	20.7 (17.2 - 32.3)	6	5.4 (5.1 - 10.5)	6	10.7 (10.7 - 19.9)
		P=0.70		P=0.27		P=0.17		P=0.13
Etiology								
HCV infection HBV infection	10 5	21.1 (17.2 - 21.9)	10 5	29.6 (26.3 - 66.4) 12.1 (7.4 - 41.2)	1 2	11.9 (ND)	1 2	19.9 (ND) 10.7 (10.7 - 12.1)
HCV+HBV	3	12.0 (6.3 - 21.8) 11.7 (6.1 - 14.8)	3	17.2 (17.2 - 17.8)	_	5.1 (5.1 - 5.4)	-	10.7 (10.7 - 12.1)
Alcohol+dismet	7	21.2 (21.2 - 26.1)	7	30.9 (ND)	2	4.7 (4.7 - 10.7)	2	10.7 (10.7 - 10.7)
Other	3	4.1 (3.3 - 15.4)	3	20.7 (8.0 - 26.3)	4	7.8 (6.1 - 13.3)	4	15.7 (6.6 - 15.7)
		P=0.0081		P=0.24		P=0.19		P=0.44
Extent of disease								
Liver only		21.1 (12.6 - 21.8)	16	30.9 (26.3 - 41.2)	6	7.8 (6.1 - 11.9)	6	15.7 (10.7 - 19.9)
EHS +/- MPVI	12	13.4 (6.3 - 21.8)	12	19.2 (14.0 - 32.3)	3	5.4 (5.1 - 10.5)	3	12.1 (10.7 - 12.1)
		P=0.75		P=0.25		P=0.19		P=0.47
MPVI								
Yes		19.7 (11.9 - 19.7)	4	ND	1	5.1 (ND)	1	12.1 (ND)
No	24	15.4 (12.0 - 21.8)	24	26.3 (17.8 - 32.3)	8	7.8 (5.4 - 11.9)	8	15.7 (10.7 - 19.9)
		P=0.28		P=0.21		P=0.09		P=0.51

<u>Table1.</u> Median PFS1+2 and OS across Sorafenib-TKI and IO –Sorafenib sequences according to baseline characteristics.

METHOD

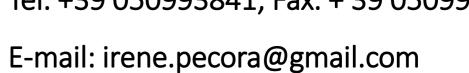
- We retrospectively collected data from aHCC patients treated at our Institution from January 2010 to January 2020.
- We defined:
 - PFS1 and PFS2 as the time from first-line and second-line (2L) beginning, respectively, to progressive disease (PD);
 - PFS1+2 as the time from 1L start to PD at
- OS2 as the time from 2L beginning to death.
- Kaplan-Meier method and Cox regression model were used.

CONCLUSIONS

- ❖ In our series, Sor-TKI performed as the most effective sequence, showing mOS consistent with available data [2,3,7].
- Starting with IO didn't seem to achieve a comparable efficacy, probably due to a weaker disease control of IO in 1L (although the small sample size of our analysis must be considered).
- ❖ In order to magnify the clinical benefit of a sequential strategy, additional research on 1L combinations (antiVEGF+IO or TKI+IO) is strongly warranted.

REFERENCES

- 1 Kudo M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 2018.
- 2 Bruix J et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 2017.
- 3. Abou-Alfa G.K. et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma New England Journal of Medicine 2018.
- 4. Zhu AX. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α -fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2019.
- 5. Cheng A-L. et al. LBA3 IMbrave150: Efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Annals of Oncology 2019.
- 6. Llovet J.M. et al. Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): Phase 3 LEAP-002 study. J Clin Oncology 2019.
- 7. Alsina A. et al. Effects of subsequent systemic anicancer medication following first-line lenvatinib: a post hoc analysis from the phase 3 REFLECT study in unresectable hepatocellular carcinoma. Liver Cancer 2020.


ACKNOWLEDGEMENTS

We thank all the patients, family members and all the physicians and nurses from all the units that participated in the study.

CONTACT INFORMATION

Irene Pecora, MD – Department of Medical Oncology, Pisa University Hospital, Pisa, Italy

Tel. +39 050993841; Fax. + 39 050992467

