

1 Department of Medical Physics, University of Wisconsin – Madison, 2 Department of Communication Sciences and Disorders, University of Wisconsin – Madison, 3 Department of Surgery, University of Wisconsin – Madison, 4 Department of Medicine, University of Wisconsin – Madison, 5 Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA

Medical Physics UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

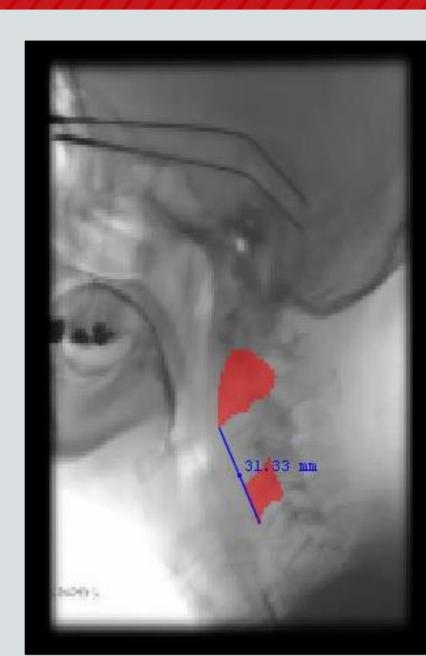
Department of

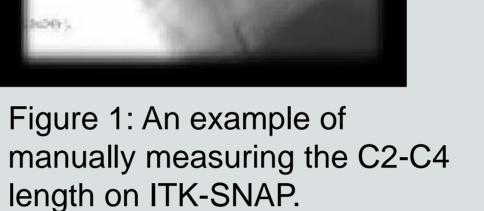
## Introduction

- In-depth analysis of videofluoroscopic swallow studies (VFS) is time consuming for the reasons listed below:
  - Identification of specific events through frame-by-frame advancement and review
  - Manual determination of features for measurements
  - Translation of information into clinically meaningful data
  - Use of 3<sup>rd</sup> party software for measurements or data recording
- The overall purpose of this work is to develop and utilize AI to support VFS analysis. This work focuses on specific structures that will be used to derive clinical metrics. This work shows the efficacy of using generalized algorithms for automatic measure determination.

### Table 1: Hyoid tracking using the anterior inferior corner

| Anterior Inferior Corner | Mean<br>Average<br>Tracking<br>Error | Average<br>Standard<br>Deviation | Max<br>Average<br>Pixel Error | Min<br>Average<br>Pixel Error |
|--------------------------|--------------------------------------|----------------------------------|-------------------------------|-------------------------------|
| Manual – Ground Truth    | 3.22                                 | 2.21                             | 9.23                          | 1.45                          |
| Manual – Predicted       | 4.36                                 | 3.84                             | 14.34                         | 1.72                          |
| Ground Truth – Predicted | 5.55                                 | 4.01                             | 15.81                         | 2.56                          |


### Table 2: Hyoid tracking using the center of mass


| Center of Mass           | Mean<br>Average<br>Tracking<br>Error | Average<br>Standard<br>Deviation | Max<br>Average<br>Pixel Error | Min<br>Average<br>Pixel Error |
|--------------------------|--------------------------------------|----------------------------------|-------------------------------|-------------------------------|
| Manual – Ground Truth    | 2.13                                 | 0.79                             | 3.15                          | 1.01                          |
| Manual – Predicted       | 2.66                                 | 2.07                             | 7.97                          | 0.69                          |
| Ground Truth – Predicted | 1.59                                 | 1.71                             | 6.16                          | 0.6                           |

#### Table 3: C2-C4 length comparisons

| C2 – C4 Length           | Average<br>Percent<br>Error | Average<br>Standard<br>Deviation |
|--------------------------|-----------------------------|----------------------------------|
| Manual – Ground Truth    | -3.22                       | 3.58                             |
| Manual – Predicted       | 3.46                        | 3.90                             |
| Ground Truth – Predicted | 04                          | 4.88                             |

# Algorithmic Hyoid Tracking and C2-C4 Length Measurement on Artificial Intelligence **Predicted Segmentations**





## Results

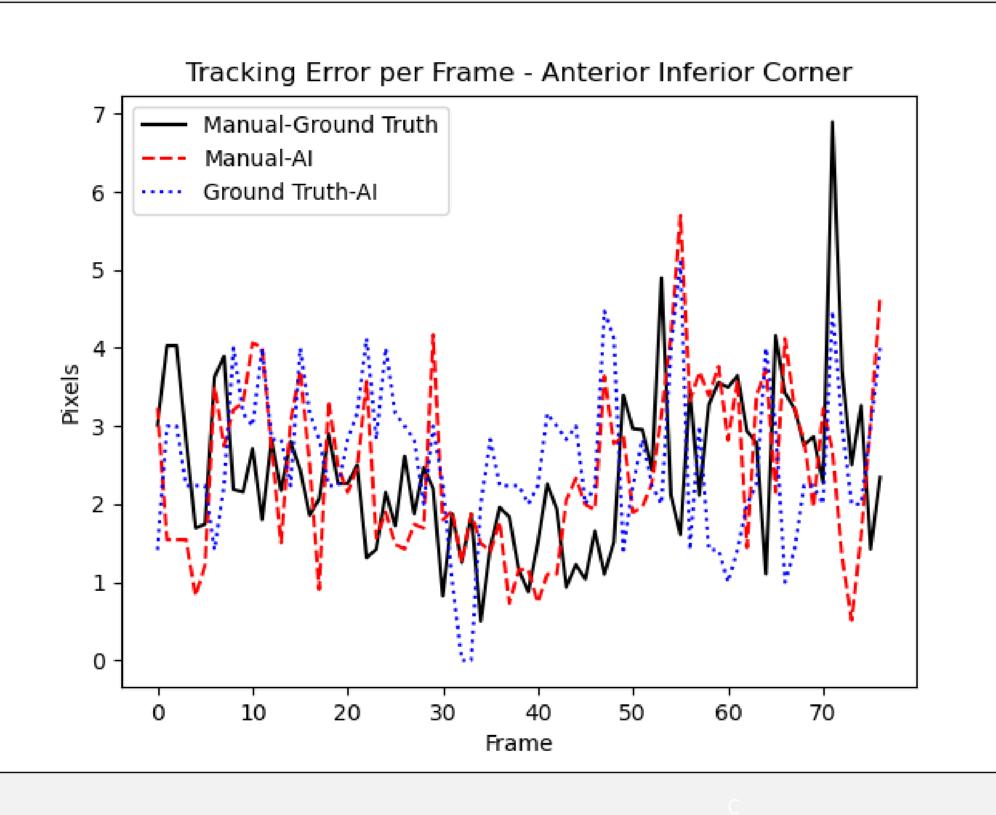
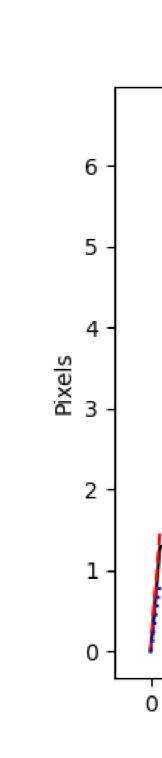




Figure 3: Frame by frame tracking error using the center of mass of the hyoid. Comparisons shown between the manual, ground truth, and AI predicted segment. Coordinates are normalized to the position of the starting frame.



### Dysphagia Research Society, March 10<sup>th</sup>, 2021

Nadeem Shaheen<sup>1</sup>, Rodolfo Peña-Chávez<sup>2</sup>, Chris Ulmschneider<sup>3</sup>, Ryan Burdick<sup>2,4</sup>, Joanne Yee<sup>4,5</sup>, Atsuko Kurosu<sup>3</sup>, Bryan Bednarz<sup>1</sup>, Nicole Rogus-Pulia<sup>2,4,5</sup>

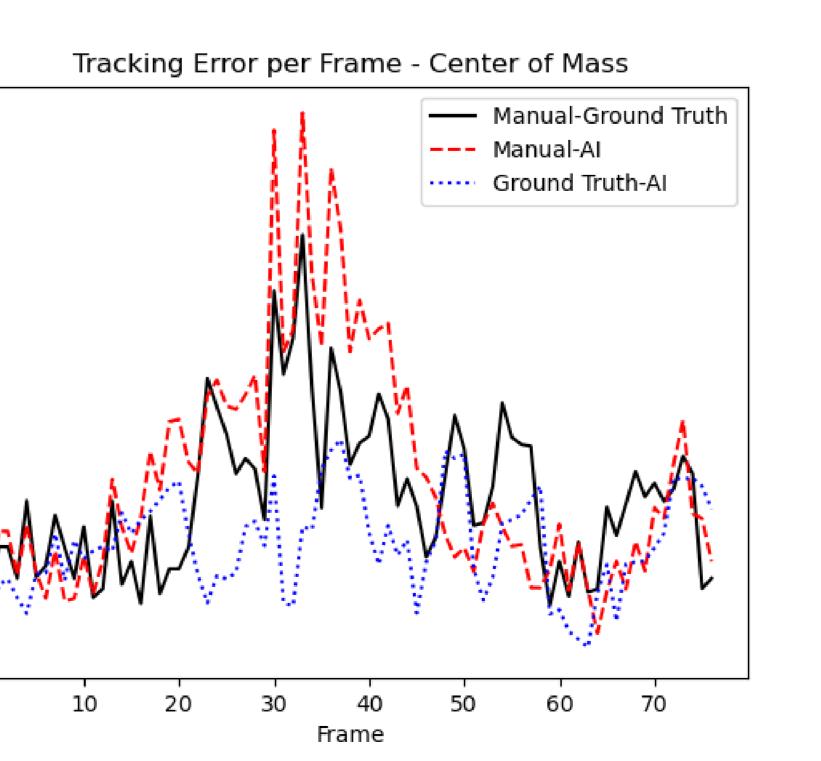
## Methods

### Dataset

 All videos were cropped to remove shielded edges and motion frames not related to the swallow, recorded at 30 fps, and had various PAS scores • C2-C4 lengths were measured on 21 videos and the hyoid was tracked on 10

#### Measurements

### • Manual


- C2-C4 length was measured on the rest frame in pixels using ITK SNAP (Figure 1)
- Hyoid was tracked by placing a point on the most anterior inferior corner on each frame

### • Algorithm

- C2-C4 length was determined using Canny edge detection to identify relevant points
- Hyoid tracked using Canny edge detection for the most anterior inferior corner and center of mass

Figure 2: Frame by frame tracking error using the anterior inferior corner of the hyoid.

Comparisons shown between the manual, ground truth, and AI predicted segment. Coordinates are not normalized to the position of the starting frame.



**Contact Information** Nshaheen@wisc.edu





Department of Medicine UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

# Conclusion

 Development of generalized algorithms to automate metric determination during VFS analysis is necessary

C2-C4 length measurements with a

generalized algorithm are comparable to manual measurements (Table 3)

• Using the anterior inferior corner of the hyoid can result in accurate tracking on AI predicted segments (Figures 2 and 3)

• Using the center of mass provides lower tracking error

Occlusion of the hyoid leads to

inaccurate center of mass determination during pharyngeal phase

# Acknowledgements

• **RED Lab Members**  Swallowing and Salivary Bioscience Lab UW Madison Fall Research Competition • SPORE CEP: P50DE026787-03 • K76:1K76AG068590-01



| DYSPHAGIA RESEARCH SOCIETY | 29TH ANNUAL MEETING |
|----------------------------|---------------------|
| Poster                     | presented at:       |

-3490284