BSH2020-PO-055

Efficacy and Safety of Bosutinib by Age and Modified **Charlson Comorbidity Index in Previously Treated Patients With Chronic** Myeloid Leukemia: Results From the Phase 4 BYOND Study

Carlo Gambacorti-Passerini¹, Tim H Brümmendorf², Bjørn Tore Gjertsen³, Camille Abboud⁴, Gianantonio Rosti⁵, Elisabetta Abruzzese⁶, Pilar Giraldo-Castellano⁷, Ulla Olsson-Stromberg⁸, Eric Leip⁹, Andrea Viqueira¹⁰, Simon Purcell¹¹, Valentin Garcia-Gutierrez¹², Frank Giles¹³, Fausto Castagnetti¹⁴, Andreas Hochhaus¹⁵

¹University of Milano-Bicocca, Monza, Italy; ²Universitätsklinikum RWTH Aachen, Germany; ³Haukeland University of Bergen, Bergen, Bergen, Norway; ⁴Washington University School of Medicine, St. Louis, MO, USA; ⁵University Hospital, University of Bologna, Rome, Italy; ⁶Hematology, S. Eugenio Hospital, Tor Vergata University, Rome, Italy; ⁶Hematology, S. Eugenio Hospital, Zaragoza, Spain; ¹ ⁸University of Uppsala and Department of Hematology, University Hospital, Uppsala, Sweden; ⁹Pfizer SLU, Madrid, Spain; ¹¹Pfizer Ltd, London, UK; ¹²Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; ¹³Developmental Therapeutics Consortium, Chicago, IL, USA; ¹⁴S. Orsola-Malpighi University of Bologna, Italy; ¹⁵Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany

Examine efficacy and safety of bosutinib by age and comorbidities in patients with

- Results demonstrate efficacy of bosutinib in patients with Ph+ CP CML resistant/intolerant to
- Older patients (aged ≥ 65 or ≥ 75 years) and those with high comorbidity burden (mCCI ≥4) showed

Ph+ CP CML resistant/intolerant to prior TKI therapy enrolled in the phase 4 BYOND study.

prior therapy across age groups and mCCI scores, with a substantial proportion of patients across age and mCCI groups achieving/maintaining molecular response.

a trend towards higher rates of TEAEs and were more likely to discontinue treatment due to AEs.

• Age and mCCI stratification may enable the identification of patients who are at higher risk of developing TEAEs and require more careful monitoring.

Background

- Bosutinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) resistant/intolerant to prior therapy and newly diagnosed Ph+ chronic phase (CP) CML.^{1,2}
- High rates of cytogenetic and molecular responses were observed during treatment with bosutinib 500 mg once daily in the phase 4 BYOND study in patients with Ph+ CP CML who were resistant/intolerant to prior TKIs.³
- Increasing age and the presence of comorbidities may influence the outcomes of patients with CML treated with TKIs.4-6

Methods

- BYOND (NCT02228382) is an ongoing, phase 4, single-arm, open-label study examining the safety and efficacy of bosutinib (starting dose 500 mg once daily) in patients with CML resistant/intolerant to prior TKI treatment. Eligibility criteria and endpoints have been previously described.³
- Efficacy and safety outcomes are reported in patients with Ph+ CP CML by:

Table 1: Demographics and Baseline Characteristics in Patients With Ph+ CP CML, by Age and Comorbidities											
		By Age	e, years	By Comorbidities							
	<65	≥65	<75	≥75	mCCI 2	mCCI 3	mCCI ≥4				
n (%)	n=95 (60.9%)	n=61 (39.1%)	n=128 (82.1%)	n=28 (17.9%)	n=100 (64.1%)	n=27 (17.3%)	n=29 (18.6%)				
Male	47 (49.5)	34 (55.7)	68 (53.1)	13 (46.4)	46 (46.0)	15 (55.6)	20 (69.0)				
Age, median (range), y	51.0 (20.0–64.0)	74.0 (65.0–89.0)	56.0 (20.0–74.0)	78.0 (75.0–89.0)	53.5 (20.0–89.0)	67.0 (38.0–87.0)	70.0 (54.0–85.0)				
ECOG PS											
0	70 (73.7)	36 (59.0)	93 (72.7)	13 (46.4)	74 (74.0)	15 (55.6)	17 (58.6)				
1	22 (23.2)	23 (37.7)	31 (24.2)	14 (50.0)	23 (23.0)	11 (40.7)	11 (37.9)				
2	3 (3.2)	2 (3.3)	4 (3.1)	1 (3.6)	3 (3.0)	1 (3.7)	1 (3.4)				
No. of prior TKIs											
1	32 (33.7)	12 (19.7)	39 (30.5)	5 (17.9)	33 (33.0)	6 (22.2)	5 (17.2)				
2	31 (32.6)	29 (47.5)	46 (35.9)	14 (50.0)	38 (38.0)	11 (40.7)	11 (37.9)				
3	27 (28.4)	19 (31.1)	37 (28.9)	9 (32.1)	25 (25.0)	10 (37.0)	11 (37.9)				
4	5 (5.3)	1 (1.6)	6 (4.7)	0	4 (4.0)	0	2 (6.9)				
Prior IFN	8 (8.4)	3 (4.9)	10 (7.8)	1 (3.6)	6 (6.0)	3 (11.1)	2 (6.9)				
Prior imatinib	81 (85.3)	60 (98.4)	113 (88.3)	28 (100.0)	88 (88.0)	25 (92.6)	28 (96.6)				
Prior dasatinib	55 (57.9)	40 (65.6)	76 (59.4)	19 (67.9)	54 (54.0)	21 (77.8)	20 (69.0)				
Prior nilotinib	51 (53.7)	28 (45.9)	67 (52.3)	12 (42.9)	52 (52.0)	9 (33.3)	18 (62.1)				
Resistant to any prior TKI	50 (52.6)	33 (54.1)	71 (55.5)	12 (42.9)	53 (53.0)	16 (59.3)	14 (48.3)				
Intolerant to all prior TKIs	45 (47.4)	28 (45.9)	57 (44.5)	16 (57.1)	47 (47.0)	11 (40.7)	15 (51.7)				

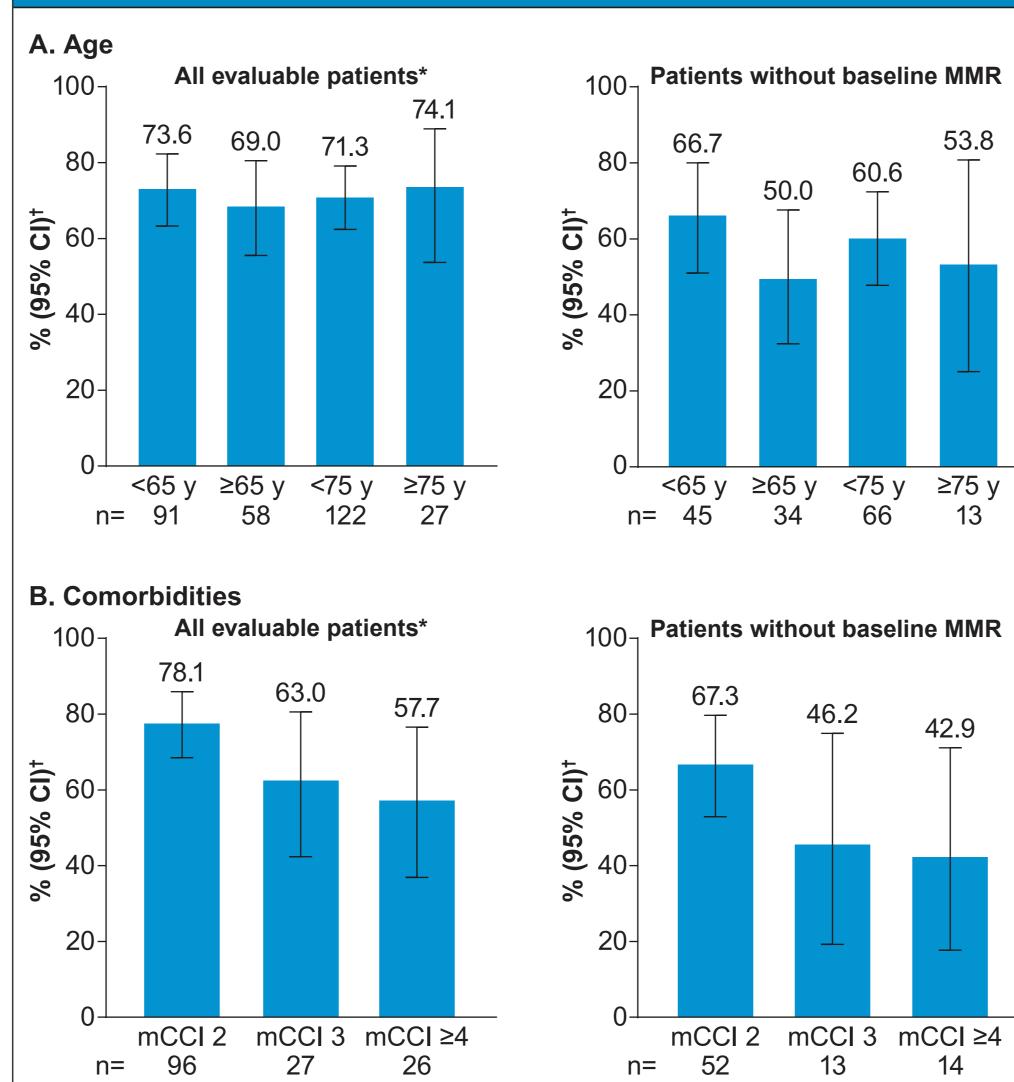
Table 1. Demographics and Baseline Characteristics in Patients With Phy CP CML by Age and Comorbidities

- Age: ≥ 65 vs < 65 years and ≥ 75 vs < 75 years.
- Comorbidities as assessed by Charlson Comorbidity Index score without the age component (mCCI)7: mCCI scores 2, 3, and \geq 4.
- Results were based on ≥1 year of follow-up (data cut-off date: September 18, 2018).

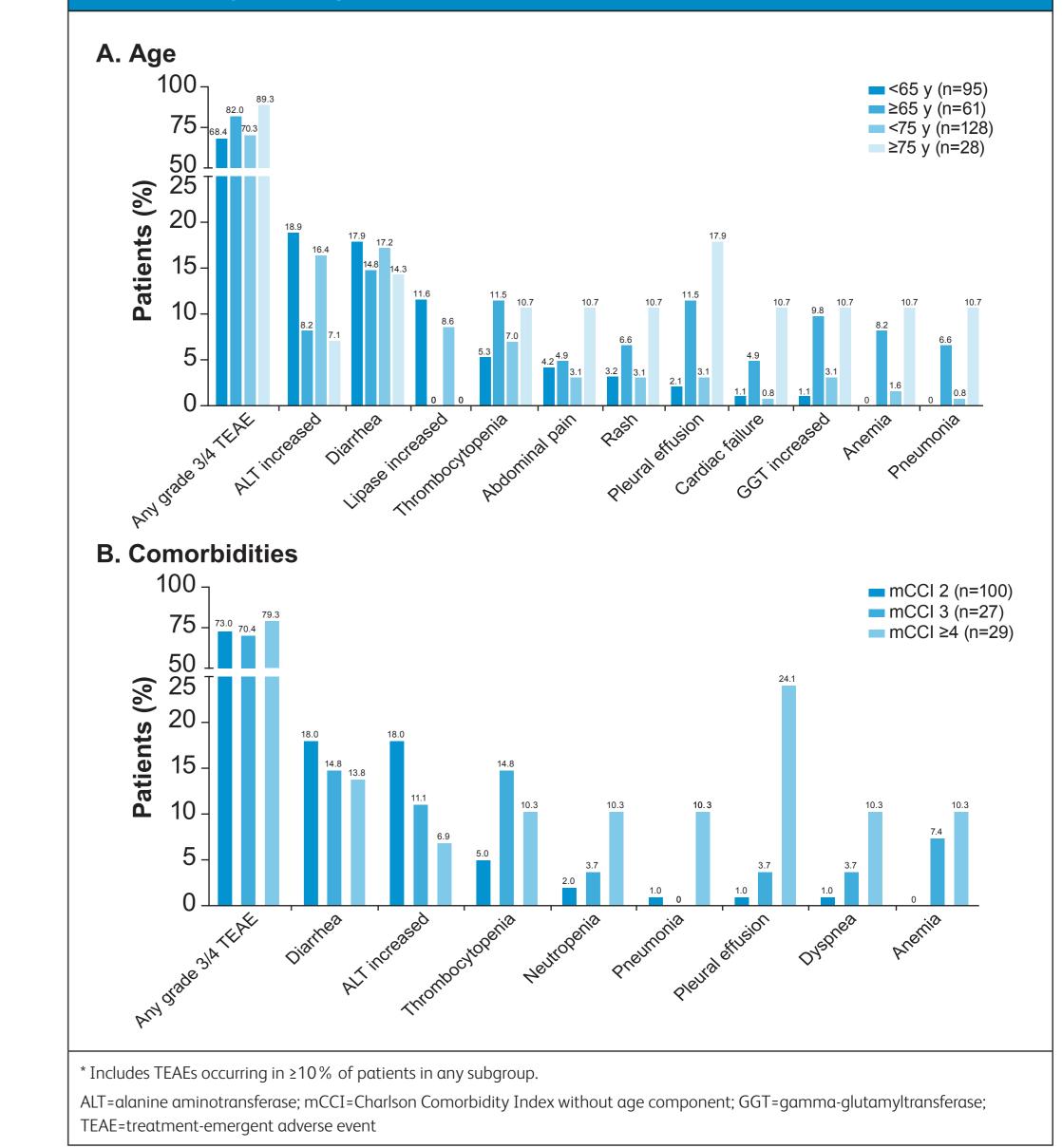
Results

- A total of 156 patients with Ph+ CP CML received bosutinib (**Table 1**).
- At the data cut-off, 44.3% vs 64.2% of patients aged ≥ 65 vs < 65 years; 39.3 % vs 60.2 % of patients aged ≥75 vs <75 years; and 62.0 %, 56.0 %, and 37.9% of patients with mCCI scores of 2, 3, and \geq 4, respectively, were still receiving bosutinib treatment. Reasons for permanent treatment discontinuation are shown in **Table 2** and **Table S1**.
- A substantial proportion of patients attained or maintained molecular response across age groups and mCCI scores (Figure 1 and Figures S1 and **S2**).
- No patient experienced on-treatment transformation to accelerated/blast phase CML.
- Grade 3/4 treatment-emergent adverse events (TEAEs) differed between groups; older patients (aged \geq 65 and \geq 75 years) and those with mCCI \geq 4 had a higher rate of grade 3/4 TEAEs (Figure 2).
- Deaths occurred in 10 vs 0 patients ≥65 vs <65 years old and 4 vs 6 patients ≥75 vs <75 years old. Deaths occurred in 4, 3, and 3 patients with mCCI scores 2, 3, and \geq 4, respectively.
- Supplementary material can be accessed via the electronic QR code.

		By Age	e, years	By Comorbidities			
	<65	≥65	<75	≥75	mCCI 2	mCCI 3	mCCI ≥4
	n=95	n=61	n=128	n=28	n=100	n=27	n=29
Duration of Tx, median (range), months	24.2 (0.4–41.9)	22.5 (0.2–42.2)	23.8 (0.4–42.2)	23.1 (0.2–37.1)	24.1 (0.2–41.9)	23.6 (0.8–42.2)	17.8 (1.6–40.9)
Dose intensity, median (range), mg/day	342.9 (145.0–560.6)	304.5 (79.7–500.0)	340.4 (79.7–560.6)	264.7 (98.4–499.5)	343.6 (125.0–560.6)	299.1 (98.4–500.0)	303.6 (79.7–496.6)
Discontinued Tx, n (%)	34 (35.8)	34 (55.7)	51 (39.8)	17 (60.7)	38 (38.0)	12 (44.0)	18 (62.1)
Adverse event	19 (20.0)	20 (32.8)	29 (22.7)	10 (35.7)	22 (22.0)	7 (25.9)	10 (34.5)
Related to study Tx	18 (18.9)	12 (19.7)	25 (19.5)	5 (17.9)	16 (16.0)	5 (18.5)	9 (31.0)
Unrelated to study Tx	1 (1.1)	8 (13.1)	4 (3.1)	5 (17.9)	6 (6.0)	2 (7.4)	1 (3.4)
Insufficient clinical	3 (3.2)	5 (8.2)	5 (3.9)	3 (10.7)	3 (3.0)	1 (3.7)	4 (13.8)
response							
Other*	12 (12.6)	9 (14.8)	17 (13.2)	4 (14.3)	13 (13.0)	4 (14.8)	4 (13.8)


53.8

13


42.9

14

Figure 1: Cumulative MMR Rates in Patients With Ph+ CP CML, by (A) Age and (B) Comorbidities

Figure 2: Summary of Grade 3/4 TEAEs in Patients With Ph+ CP CML, by (A) Age and (B) Comorbidities*

PO-055-A

BSH2020

Electronic Poster and Supplementary Material

Please scan this quick response (QR) code with your smartphone app to view an electronic version of this poster and supplementary material. If you don't have a smartphone, access the poster and supplementary material via the internet at: https://pfizer.congressposter.com/p/ d0puk16iw38gi4xg

References: 1. Bosulif (bosutinib) prescribing information. Pfizer; 2017. 2. Summary of product characteristics: Bosulif (bosutinib); EMA; 2018. 3. Hochhaus A, et al. Leukemia 2020;34:2125-37. 4. Saussele S, et al. Blood 2015;126:42-9. 5. Gugliotta G, et al. Expert Rev Hematol 2013;6:563-74. 6. Rosti G, et al. Haematologica 2007;92:101-5. 7. Hall WH, et al. BMC Cancer 2004;4:94.

Acknowledgments: This study was sponsored by Pfizer. Medical writing support was provided by Gemma Shay, PhD, of Engage Scientific Solutions and was funded by Pfizer. Copyright © 2020

Presented at the British Society for Haematology (BSH) Virtual Meeting, November 9–14, 2020

General Haematology

Carlo Gambacorti-Passerini

* Evaluable patients had valid baseline efficacy assessments for the respective endpoint. + Associated 2-sided 95% CI based on the exact method by Clopper-Pearson. mCCI=Charlson Comorbidity Index without age component; MMR=major molecular response

