# 9-14 NOVEMBER



External Quality Asssurance (EQA) for the Thromboelastometry devices: UK NEQAS BC programme update

DP Kitchen<sup>1</sup>, L Brown<sup>1</sup>, S Munroe-Peart<sup>1</sup>, I Jennings<sup>1</sup>, S Kitchen<sup>1</sup>, ID Walker<sup>1</sup> UK NEQAS BC, Sheffield, UK



### INTRODUCTION



Thromboelastography and Thromboelastometry are Point of Care testing (POC) technologies for global haemostasis . They measure the elasticity of a developing clot. Thromboelastometry is performed using Rotem ® devices. The Rotem delta device requires samples and reagents to be pipetted whereas the newer Rotem Sigma device uses cartridge based technology with no pipetting required. The TEG devices are used to perform

Thromboelastography and can be either TEG5000 which requires samples to be pipetted or TEG6 which is cartridge based. The majority of devices are in theatres and specialist wards and usually operated by staff without laboratory training. UK National External Quality Assurance Service for Blood Coagulation (UK NEQAS BC) has provided External Quality Assurance (EQA) for TEG5000 and Rotem Delta devices for over 5 years. 16 surveys of the EQA for Rotem delta and for TEG 5000 have been completed over a 5 year period. An EQA programme was introduced for Rotem Sigma and TEG6 in April 2019 and 3 surveys have been completed. Samples have been of 4 types: Normal donor plasma, Normal donor plasma spiked with heparin, Plasma from patients treated with DOACs and Normal plasma with reduced factor levels to mimic blood loss.

Although all parameters are submitted and medians, CVs and ranges are reported only for the R time for TEG devices and CT for the Rotem devices are scored.

#### Table 1

|                      |       | Rote | m Delta CT s | TEG 5000 R time minutes |        |      |           |      |            |      |
|----------------------|-------|------|--------------|-------------------------|--------|------|-----------|------|------------|------|
| Sample               | ExTEM | %CV  | inTEM        | %CV                     | HepTEM | %CV  | Plain cup | %CV  | Heparinase | %CV  |
| type                 |       |      |              |                         |        |      |           |      | cup        |      |
| Prolonged            | 96    | 73.2 | 308          | 17.1                    | 283    | 10.2 | 16        | 25.3 | 18.5       | 20.9 |
| clotting             |       |      |              |                         |        |      |           |      |            |      |
| Apixaban             | 92    | 20.5 | 195          | 12.3                    | 214    | 18.3 | 10.3      | 17.4 | 12.1       | 25.2 |
| Heparin              | 57    | 20.9 | 223          | 14.9                    | 154    | 8.5  | Flatline  | NA   | 16.9       | 59.5 |
| Normal               | 55.5  | 18.5 | 167          | 7.2                     | 175    | 8.8  | 8.1       | 27.8 | 8.7        | 22.7 |
| Prolonged clotting   | 200.5 | 69.0 | 310          | 18.4                    | 308    | 19.5 | Flatline  | NA   | Flatline   | NA   |
| Heparin low<br>level | 49    | 8.7  | 242          | 15.6                    | 191    | 8.0  | Flatline  | 18.6 | 7.6        | 11.7 |

## Rotem trace showing parameters

Results are shown in table 1 for Rotem Delta and TEG 5000 (both pipette based devices) and for Rotem Sigma and TEG6 in table 2 (both cartridge based technology)

| Table 2                |        |      |       |      |       |      |        |     |       |                      |                 |      |                                        |      |
|------------------------|--------|------|-------|------|-------|------|--------|-----|-------|----------------------|-----------------|------|----------------------------------------|------|
| Rotem Sigma CT seconds |        |      |       |      |       |      |        |     |       | TEG6 R times minutes |                 |      |                                        |      |
| Sample<br>type         | FibTEM | %CV  | ExTEM | %CV  | InTEM | %CV  | HepTEM | %CV | ApTEM | %CV                  | Citrated kaolin | %CV  | Citrated kaolin<br>with<br>hepariniase | %CV  |
| Normal                 | 106    | 13.4 | 111   | 13.9 | 261   | 3.9  | 258    | NA  | 96    | 12.7                 | 10.8            | 13.6 | 10.6                                   | 30.7 |
| Prolonged clotting     | 299    | 20.3 | 307   | 22.9 | 499   | 10.2 | 484    | 5.6 | 285   | 18.2                 | Flatline        | NA   | Flatline                               | NA   |
| Heparin low<br>level   | 90.5   | 7.8  | 96.5  | 9.3  | 406.5 | 5.4  | 252    | 5.1 | 91    | 10.4                 | Flatline        | NA   | 9.1                                    | 7.7  |



To provide EQA for the recently introduced cartridge based thromboelastography/ thromboelastometry methods.

#### METHOD

One lyophilised citrated plasma sample is distributed to participants three times per year. The sample is supplied with a pre measured volume of diluent and disposable pipette so no laboratory equipment is needed. Participants are allowed 24 days to perform the test and return results. Tests should be run for 30 minutes so the actual time required to process the sample is around 45 minutes which includes reconstituting the sample and performing the test. NA- not applicable, CV not calculated because of <5 results or results where no clotting was achieved ie "flatline"

Table 3

|                      | Percentage of centres in agreement of<br>sample type |                |  |             |      |  |  |  |  |  |
|----------------------|------------------------------------------------------|----------------|--|-------------|------|--|--|--|--|--|
| Sample type          | Rotem<br>delta                                       | Rotem<br>Sigma |  | TEG<br>5000 | TEG6 |  |  |  |  |  |
| Normal               | 98                                                   | 87.8           |  | 74.5        | 95   |  |  |  |  |  |
| Prolonged clotting   | 93                                                   | 100            |  | 96          | 100  |  |  |  |  |  |
| Heparin low<br>level | 81                                                   | 65.1           |  | 95.2        | 100  |  |  |  |  |  |

As well as the numeric value for parameters we also ask for an interpretation of the results. Interpretation of the sample type by device are shown in table 3 for the 3 samples that were common to both pipette based and cartridge based technology

#### CONCLUSIONS

Results show CVs ranged from 7.2%- 73.2% for Rotem delta and 17.7%- 59.5% for TEG5000.

#### ACKNOWLEDGEMENT

UK NEQAS BC would like to thank all our participants in the Thromboelastography/ thromboelastometry EQA programme.

Parameters for the Rotem Sigma are required for CT, CFT, A5, A10 and A20 for FibTEM, ExTEM, InTEM and either HepTEM or ApTEM depending on cartridge used.

Parameters for the TEG6 are required for R time, K time, Angle and MA for CK, and CKH

CVs for cartridge technology ranged from 3.9%- 22.9% for Rotem Sigma and 7.7%-30.7% for TEG6, (data from the 3 completed surveys). Cartridge based technology showed an improvement in CVs.

Although not performance assessed interpretations were received from most users. Overall users were in agreement across the sample types with the lowest agreement (65%) with the low level spiked heparin sample on the Rotem Sigma devices. FURTHER READING

Curry et al , BJH 2018 Vol 182 (6) 789-806. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for haematology Guideline. Kitchen DP et al, JTH 2020 Vol 18(9) 2418-2420. letter in response to "Systematic review of viscoelastic testing(TEG/Rotem) in obstetrics and recommendations form the women's SSC of the ISTH"

#### **CONTACT INFORMATION**

Lead authordianne.kitchen@nhs.netGeneral email addressneqas@coageqa.org.uk.



