

Is the Valacyclovir Prophylaxis Effective for Prevention of **Cytomegalovirus Infection in Kidney Transplant Recipients?**

Woo Yeong Park^{1,2}, Seong Sik Kang^{1,2}, Kyubok Jin^{1,2}, Sung Bae Park^{1,2}, Seungyeup Han^{1,2}

¹Department of Internal Medicine, Keimyung University School of Medicine, ²Keimyung University Kidney Institute, Daegu, Korea, Republic of

INTRODUCTION

Cytomegalovirus (CMV) infection is one of the most common opportunistic infections in kidney transplant recipients (KTRs) despite the development of diagnosis and treatment for CMV infection. There are still many controversies about the strategies for the prevention of CMV infection.

We investigated the efficacy of valacyclovir prophylaxis for 3 months compared with intravenous ganciclovir for 2 weeks for prevention of CMV infection in KTRs.

We retrospectively analyzed 153 KTRs between September 2013 and January 2016. We investigated the incidence of CMV infection between the two groups, risk factors of CMV infection and CMV free survival.

Control group		IV ganciclovir				F	<mark>/U C</mark> I ↓	<mark>MV a</mark> ↓	ntige ↓	<mark>enem</mark> ↓	<mark>ia n</mark> ↓	<mark>nontl</mark> ↓	hly ↓		
KT		POD 14			3 months after KT						12 months after KT				
							F/U CMV antigenemia						monthly		
Valacyclovir		IV ganciclovir	PO	valacyclovir		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
group															
	KT	POD 14	ł		3 mor	nths <⊤						1 a	2 mc fter k	onths (T	

Figure 1. Incidence of CMV infection and disease between control group and valacyclovir group

Table 2. Risk factors associated with CMV infection in KTRs

Variables		Univariate		Multivariate				
variables	Εχρ (β)	95% C.I.	P-value	Exp (β)	95% C.I.	P-value		
Age at KT	1.06	1.02-1.10	0.001	1.06	1.02-1.10	0.007		
Male gender	0.68	0.35-1.31	0.250					
KT number	0.82	0.29-2.33	0.714					
Deceased donor	2.46	1.22-4.96	0.012	1.02	0.37-2.81	0.970		
HLA mismatch number	1.09	0.90-1.32	0.403					
ATG induction	4.26	2.09-8.67	0.000	3.28	1.47-7.32	0.004		
DGF	2.86	1.13-7.20	0.026	3.44	1.17-10.13	0.025		
BPAR	3.76	1.08-13.10	0.038	3.47	0.87-13.80	0.077		
PRA > 50%	2.03	0.95-4.34	0.068	0.98	0.35-2.74	0.971		
DSA	1.22	0.49-3.06	0.665					
Valacyclovir prophylaxis	0.36	0.16-0.79	0.011	0.26	0.10-0.67	0.005		

Drug dosage was determined by eGFR.

Table 1. Comparison of clinical and laboratory parameters between control group and valacyclovir group

Valuables	Control (n=107)	Valacyclovir (n=46)	<i>P</i> -value	
Recipient age at KT, years	48.4 ± 11.0	50.2 ± 11.5	0.350	
Donor age at KT, years	43.9 ± 13.5	44.4 ± 13.4	0.832	
Recipient male gender, n (%)	65 (60.7)	22 (47.8)	0.157	
Donor male gender, n (%)	68 (63.6)	29 (63.0)	1.000	
Donor type			0.591	
Living: Deceased	46: 61	17: 29		
ABO-incompatible KT, n (%)	8 (7.5)	5 (10.9)	0.533	
KT number			0.713	
First: Second	93: 13	42:4		
Dialysis type before KT, n (%)			0.443	
Hemodialysis	78 (72.9)	37 (80.4)		
Peritoneal dialysis	15 (14.0)	3 (6.5)		
Cause of end-stage renal disease, n (%)			0.311	
Glomerulonephritis	71 (66.4)	33 (71.7)		
Diabetes mellitus	13 (15.1)	9 (22.0)		
Hypertension	9 (8.4)	3 (6.5)		
Others	10 (9.3)	0		
HLA mismatch number	3.3 ± 1.7	2.9 ± 1.8	0.139	
Induction immunosuppressant, n (%)			0.854	
Basiliximab	70 (65.4)	31 (67.4)		ΕI
Antithymocyte globulin	37 (34.6)	15 (32.6)		
Biopsy-proven acute rejection, n (%)	10 (9.3)	2 (4.3)	0.512	
Delayed recovery of graft function, n (%)	14 (13.1)	8 (17.4)	0.465	V
CMV serostatus, n (%)			1.000	1
Donor+Recipient-	0	1 (2.2)		Int
Recipient+	107(100)	45 (97.8)		aq
BK virus nephropathy, n (%)	10 (9.3)	1 (2.2)	0.175	
Panel reactive antibody, n (%)	25 (24.8)	12 (26.1)	1.000	at
Donor specific antibody, n (%)	15 (15.2)	8 (17.4)	0.808	Acres
Serum creatinine at diagnosis (mg/dL)	1.12 ± 0.30	1.59 ± 1.09	0.168	
MDRD eGFR at diagnosis (mL/min//1.73m ²)	65.69 ± 20.05	51.96 ± 21.20	0.047	a setta picture
Time from KT to CMV infection, months	4.5 ± 4.4	6.2 ± 2.6	0.198	1.

CMV = cytomegalovirus, C.I. = confidence interval, KT = kidney transplantation, HLA = human leukocyte antigen, ATG = antithymocyte globulin, DGF = delayed recovery of graft function, BPAR = biopsy-proven acute rejection, PRA = panel reactive antibody, DSA = donor specific antibody

Values are expressed as means ± SDs, n (%). KT = kidney transplantation, ADPKD = autosomal dominant 3. polycystic kidney disease, HLA = human leukocyte antigen, CMV = cytomegalovirus, MDRD eGFR = modification of diet in the renal disease estimated glomerular filtration rate

follow-up duration (months)

gure 2. CMV-free survival between control group and valacyclovir group

CONCLUSIONS

/alacyclovir prophylaxis significantly reduced the incidence of CMV fection in KTRs. In particular, valacyclovir prophylaxis should be used gressively for 3 months in KTRs with risk factors such as older age KT, antithymocyte globulin induction, and delayed graft function.

REFERENCES / BIBLIOGRAPHY

Kotton CN. Am J Transplant. 2013;13:24-40 Razonable RR. et al. Am J Transplant. 2013;13:93-106 Reischig T. et al. J Am Soc Nephrol 2012;23: 1588-1597 4. Reischig T. et al. Clin J Am Soc Nephrol 2015;10: 294-304

KEIMYUNG UNIVERSITY SCHOOL OF MEDICINE

Renal transplantation - Treatment & immunosuppre

Woo Yeong Park

DOI: 10.3252/pso.eu.54ERA.2017

