



# Combination Therapy of Rituximab and Intravenous Immunoglobulin as an Effective Treatment for Chronic Antibody-Mediated Rejection in Kidney Transplant Recipients

Woo Yeong Park<sup>1,2</sup>, Seong Sik Kang<sup>1,2</sup>, Kyubok Jin<sup>1,2</sup>, Sung Bae Park<sup>1,2,</sup> Seungyeup Han<sup>1,2</sup>

<sup>1</sup>Department of Internal Medicine, Keimyung University School of Medicine, <sup>2</sup>Keimyung University Kidney Institute,

Daegu, Korea, Republic of

### INTRODUCTION

Chronic antibody-mediated rejection (CAMR) is a representative cause of chronic allograft loss. Several studies have cited combination of rituximab and intravenous immunoglobulin (IVIG) as a treatment for CAMR, but the effects are still controversial.

## Table 2. Comparison of clinical and laboratory parameters according to Graft failure

| Valuables                               | Non-graft failure   | Graft failure       | <i>p</i> -Value |
|-----------------------------------------|---------------------|---------------------|-----------------|
|                                         | (n = 12)            | (n = 15)            |                 |
| Age at diagnosis (yr)                   | 49 ± 10             | 49 ± 11             | 0.942           |
| Gender (Male: Female), n (%)            | 11 (91.7): 1 (8.3)  | 7 (46.7): 8 (53.3)  | 0.019           |
| Dialysis duration, months               | 47.1 ± 35.6         | 82.0 ± 81.6         | 0.152           |
| Donor type (living: deceased), n (%)    | 7 (58.3): 5 (41.7)  | 9 (60.0): 6 (40.0)  | 1.000           |
| Cause of end-stage renal disease, n (%) |                     |                     | 0.851           |
| Glomerulonephritis                      | 9 (75.0)            | 13 (86.7)           |                 |
| Hypertension                            | 1 (8.3)             | 1 (6.7)             |                 |
| Diabetes mellitus                       | 1 (8.3)             | 1 (6.7)             |                 |
| Polycystic kidney disease               | 1 (8.3)             | 0                   |                 |
| HLA mismatch number                     | $3.6 \pm 1.4$       | 3.1 ± 1.5           | 0.363           |
| PRA class I                             | $38.6 \pm 33.7$     | $20.0 \pm 26.5$     | 0.197           |
| PRA class II                            | 43.3 ± 41.7         | $28.3 \pm 37.5$     | 0.419           |
| PRA > 50%, n (%)                        | 6 (66.7)            | 5 (45.5)            | 0.406           |
| DSA, n (%)                              | 6 (75.0)            | 6 (60.0)            | 0.638           |
| Induction, n (%)                        |                     |                     | 0.063           |
| Basiliximab                             | 8 (66.7)            | 5 (33.3)            |                 |
| Antithymocyte globulin                  | 2 (16.7)            | 1 (6.7)             |                 |
| Main immunosuppressant, n (%)           |                     |                     |                 |
| Tacrolimus: Cyclosporine                |                     |                     |                 |
| At KT                                   | 9 (75.0): 3 (25.0)  | 8 (53.3): 7 (46.7)  | 0.424           |
| At diagnosis                            | 9 (75.0): 3 (25.0)  | 11 (73.3): 4 (26.7) | 1.000           |
| After diagnosis or treatment            | 10 (83.3): 2 (16.7) | 10 (66.7): 3 (20.0) | 0.662           |
| Previous acute rejection, n (%)         | 4 (33.3)            | 2 (13.3)            | 0.357           |
| Proteinuria at diagnosis (g/day)        | $2.5 \pm 3.6$       | 2.7 ± 2.0           | 0.896           |
| High (≥1.3 g/day) : Low (<1.3 g/day) in | 2 . 2               | 2 • 1               | 1 000           |
| rituximab and IVIG                      | 3.Ζ                 | J.I                 | 1.000           |
| High (≥1.3 g/day) : Low (<1.3 g/day) in | 0.7                 | 7 · 1               | 0.012           |
| non-rituximab and IVIG                  | 0.7                 | 1.4                 | 0.013           |
| Time from KT to diagnosis of CAMR,      | $067 \pm 922$       | $107.7 \pm 70.6$    | 0 710           |
| months                                  | 90.7 ± 02.3         | $107.7 \pm 70.6$    | 0.710           |
| Treatment, n (%)                        | 9 (75.0)            | 6 (40.0)            | 0.121           |
| Treatment options, n (%)                |                     |                     | 0.044           |
| Rituximab + IVIG                        | 5 (41.7)            | 4 (26.7)            |                 |
| Rituximab                               | 0                   | 2 (13.3)            |                 |
| IVIG                                    | 1 (8.3)             | 0                   |                 |
| Steroid pulse therapy                   | 3 (25.0)            | 0                   |                 |
| None                                    | 3 (25.0)            | 9 (60.0)            |                 |
| Death, n (%)                            | 0                   | 6 (40.0)            | 0.020           |



We investigated the efficacy of rituximab and IVIG on the progression of CAMR in kidney transplant recipients (KTRs).

## METHODS

We retrospectively analyzed 27 KTRs with CAMR diagnosed by allograft biopsy-using the Banff 2005 classification. We divided into two groups as follows: combination group treated with rituximab (375 mg/m<sup>2</sup>) and IVIG (2 g/kg) and control group not treated or used different protocols such as rituximab or IVIG only, steroid pulse therapy (non-rituximab and IVIG group). The change of graft function, and factors associated with graft survival were analyzed between two groups.



## Table 1. Comparison of clinical and laboratory parameters according to treatment options

| Valuables | Non-RIT+IVIG | RIT+IVIG | <i>p</i> -Value |
|-----------|--------------|----------|-----------------|
|           | (n = 18)     | (n = 9)  |                 |

| Age at diagnosis (yr)                   | 49 ± 11         | 47 ± 10           | 0.197 |
|-----------------------------------------|-----------------|-------------------|-------|
| Gender (Male: Female), n (%)            | 12: 6           | 6: 3              | 1.000 |
| Dialysis duration, months               | 73.7 ± 75.1     | $52.0 \pm 45.6$   | 0.467 |
| Donor type (living: deceased), n (%)    | 12: 6           | 4: 5              | 0.411 |
| Cause of end-stage renal disease, n (%) |                 |                   | 0.854 |
| Glomerulonephritis                      | 14 (77.8)       | 8 (88.9)          |       |
| Hypertension                            | 2 (11.1)        | 0                 |       |
| Diabetes mellitus                       | 1 (5.6)         | 1 (11.1)          |       |
| Polycystic kidney disease               | 1 (5.6)         | 0                 |       |
| HLA mismatch number                     | 3.3 ± 1.5       | 3.2 ± 1.5         | 0.529 |
| PRA class I                             | 14.8 ± 17.1     | 44.3 ± 35.8       | 0.045 |
| PRA class II                            | $38.3 \pm 41.8$ | $32.2 \pm 38.3$   | 0.746 |
| PRA > 50%, n (%)                        | 5 (45.5)        | 6 (66.7)          | 0.406 |
| DSA, n (%)                              | 6 (60.0)        | 6 (75.0)          | 0.638 |
| Induction, n (%)                        |                 |                   | 0.392 |
| Basiliximab                             | 10 (55.6)       | 3 (33.3)          |       |
| Antithymocyte globulin                  | 1 (5.6)         | 2 (22.2)          |       |
| Main immunosuppressant, n (%)           |                 |                   |       |
| Tacrolimus: Cyclosporine                |                 |                   |       |
| At KT                                   | 10: 8           | 7: 2              | 0.406 |
| At diagnosis                            | 12: 6           | 8: 1              | 0.363 |
| After diagnosis or treatment            | 11: 5           | 9: 0              | 0.125 |
| Previous acute rejection, n (%)         | 3 (16.7)        | 3 (33.3)          | 0.367 |
| Proteinuria at diagnosis (g/day)        | 1.5 ± 1.6       | 4.4 ± 3.7         | 0.047 |
| High (≥1.3 g/day) : Low (<1.3 g/day)    | 7:11            | 6:3               | 0.236 |
| Time from KT to diagnosis of CAMR,      | 013 + 547       | $125.8 \pm 104.3$ | 0 745 |
| months                                  | 91.5 ± 54.7     | 123.0 ± 104.3     | 0.745 |
| Graft failure, n (%)                    | 11 (61.1)       | 4 (44.4)          | 0.448 |
| Death, n (%)                            | 4 (22.2)        | 2 (22.2)          | 1.000 |

Values are expressed as means ± SDs, n (%). HLA, human leukocyte antigen; PRA, panel reactive antibody; DSA, donor specific antibody; KT, kidney transplantation; MDRD eGFR, Modification of diet in the renal disease estimated glomerular filtration rate; CAMR, chronic antibody-mediated rejection.



Values are expressed as means ± SDs, n (%). HLA, human leukocyte antigen; PRA, panel reactive antibody; DSA, donor specific antibody; KT, kidney transplantation; MDRD eGFR, Modification of diet in the renal disease estimated glomerular filtration rate; CAMR, chronic antibody-mediated rejection.

# CONCLUSIONS

The rate of graft failure was lower and the decline of graft function was lesser in rituximab and IVIG group. In KTRs diagnosed to CAMR with high proteinuria, combination therapy of rituximab and IVIG showed less progression to graft failure compared with other therapy. Combination therapy with rituximab and IVIG could be an effective treatment of CAMR in KTRs. Baseline Diagnosis 1month 3months 6months 12months

#### **Follow-up period**

Figure 1. The change of graft function between RIT+IVIG and non-RIT+IVIG group.

## **REFERENCES / BIBLIOGRAPHY**

Remport A et al. Nephrol Dial Transplant. 2014. doi: 10.1093/ndt/gfu371.
 Hassan R et al. Iran J Kidney Dis. 2014;8:93-103.
 Selez K. Cehrin DD. Decuser I.C. et al. Am. J Transplant. 2007;7:540, 520.

Solez K, Colvin RB, Racusen LC, et al. Am J Transplant. 2007;7:518-526.
 Levey AS et al. Clin Chem. 2007;53:766-772

#### KEIMYUNG UNIVERSITY SCHOOL OF MEDICINE



Renal transplantation - Treatment & immunosuppre

Woo Yeong Park

DOI: 10.3252/pso.eu.54ERA.2017



