LONGITUDINAL EVALUATION OF CLASSIC AND NOVEL ECHOCARDIOGRAPHIC

INDICES OF LEFT VENTRICULAR FUNCTION AFTER KIDNEY TRANSPLANTATION

L. Lakkas¹, E. Ntounousi², A. Bechlioulis¹, A. Duni², I. Gkirdis¹, C. Pappas², K.K. Naka¹, L.K. Michalis¹

¹2nd Department of Cardiology and Michaelideion Cardiac Center, and ²Nephrology Department and Renal Transplant Unit, University of Ioannina, Ioannina, Greece

Introduction

- > Cardiovascular disease is the leading cause of death in kidney transplant recipients (KTRs) with functioning graft.
- > Abnormal cardiac morphology is a risk factor for cardiovascular complications in KTRs.
- Echocardiographic study, including conventional indices and novel deformation related indices, is considered a suitable diagnostic utility for the evaluation of *subclinical* left ventricular (LV) dysfunction and may discriminate patients at high cardiovascular risk.

RESULTS

Changes in metabolic parameters at follow-up						
	Baseline	Follow-up	P value			
BMI, kg/m²	26.0±4.4	26.2±4.2	0.665			
Urea, mg/dl	40 (36, 57)	47 (38, 71)	0.078			
eGFR-CKD EPI ml/min/1.73 m ²	55±13	57±17	0.218			
Urine protein	130 (63, 326)	175 (110, 441)	0.038			
Hb, g/dl	13.5 (12.1, 14.9)	13.5 (11.9, 15.1)	0.962			
Na, mmol/l	139±3.3	138±3.1	0.006			
K, mmol/l	4.5±0.4	4.2±0.4	0.006			
Ca, mg/dl	9.9±0.5	9.7±0.6	0.006			
PO4, mg/dl	3.2 (2.8, 3.6)	3.0 (2.6, 3.5)	0.320			
PTH	98 (72, 132)	98 (80, 128)	0.975			
Total cholesterol, mg/dl	212±32	201±25	0.077			
HDL-c, mg/dl	55±13	52±11	0.054			
LDL-c, mg/dl	126±29	118±22	0.198			
Triglycerides, mg/dl	148±50	154±53 0.569				
Data are presented as mean±SD or median (IQ range)						

<u>Aim</u> – To evaluate possible longitudinal changes of classic

and novel echocardiographic parameters and their association with renal graft function markers.

METHODS

Study Population

>37 prevalent KTRs (mean eGFR-CKD-EPI 55±13 ml/min/ 1.73m², mean age 50 years old, 65% men, median time from KT 51 months), in steady state from the out-patient clinic >Exclusion criterion was known cardiovascular disease >Patients were followed up (FU) for a median 39 months (min 32, max 43) Renal function markers (eGFR and 24h urine protein-UPR, mg/24h)

>LV systolic and diastolic function indices (by con-ventional tissue Doppler and 2D strain echocardiogra-phy)

Changes in classic echo parameters at follow-up							decrease in me p=	edian value -8.5% 0.001	
	Baseline	Follow-up	P value	" "	੨ ਜ ⁸⁰⁻				
LVEF, %	71 (65, 76)	65 (60, 70)	0.001	actio	armo				
LVMI, gr/m²	96 (73, 118)	99 (86, 141)	0.009	ion fr	70- 10				
Stroke Volume, i	ml 84±18	78±18	0.114	aiort	-00 60				
LAVI, ml/m ²	31±10	32±10	0.605	ΛI	50-		G		
E/A	1.00 (0.84, 1.1	5) 0.90 (0.73, 1.07) 0.015						
IVRT, msec	87±21	92±25	0.321		40 -⊑		Baseline	Follow-up	
Systolic PAP, mm	nHg 26±15	27±8	0.711		200 -		increase in m	edian value +3.1%	
Smedial, cm/sec	8 (7, 10)	7 (7, 9)	0.104		200		р=(0.009	
Slateral, cm/sec	10 (8, 11)	9 (8, 10)	0.568	r./m2	150-				
E', cm/sec	11±3	9±2	<0.001	a vob	ney, g				
E/E'	7.3 (6.5, 9.5)) 8.8 (7.9, 9.9)	0.002	ace in	100- S				
TAPSE, mm	24 (21, 27)	22 (21, 24)	0.374	W m	50-		G	3	
TvSV, cm/sec	15 (14, 16)	14 (12, 16)	0.008						
Data are present	ted as mean±SD or me	edian (IQ range)			0		Baseline	Follow-up	
Changes in r	novel echo param	neters at follow-i	an dr				decrease in	median value -21%	
	Baseline	Follow-up	P value		:	20 -		p=0.002	
GLS,%	-21±4	-20±3	0.157		le				
GCS,%	-28±7	-29±7	0.471		T ang	10 -	6		
GRS,%	19 (13, 33)	22 (15, 36)	0.753		SIWI				
SRS, s-1	-1.31±0.24	-1.09±0.20	<0.001			0 -	G		
SRE, s-1	1.56 ± 0.49	1.26±0.36	<0.001		-1				
SR_IVR, msec	0.36 ± 0.14	0.36±0.19	0.813				Baseline	Follow-up	
TWIST angle,	7.2 (6.2, 12.9)	5.7 (3.3, 9.8)	0.002		1	100-	decrease in	median value -21% =0.035	
Time to neak	387+77	385+115	0 927				1		
systole, msec	307 177	505±115	0.927		ngle	0-	6		
UNTWIST angle,	-70 (-96, -57)	-55 (-92, -33)	0.035		IST a	100-			
degress					MTW		G		
Time to diastole,	499 (458, 537)	494 (463, 538) 0.987		5 -2	200-	G	le la	
msec					_3	300-			
C_PEAK,degress	-1.00 (-1.94, -0.38	3) -0.25 (-0.88, 0.0	00) <0.001			500-	Baseline	Follow-up	
C_TIME,msec	73 (40, 100)	45 (0, 77)	0.002						
Data are presented as mean±SD or median (IQ range)									
Correlation of changes in renal and echocardiographic markers									
	Δ (eGFR-CKDEPI)	Δ (Urine Protein)					A (IVEE)	Λ (Ι ΥΜΤ)	
Δ (LVEF)	R -0.244, p=0.146	R -0.175, p=0.315		ST)		R	0.327 n=0.052	R = 0.141 n=0.411	
Δ (LVMI)	R -0.151, p=0.372	R 0.073, p=0.675		-WIS	T)	R	-0.114 p=0.509	R -0 116 $p=0.500$	
Δ (E/A)	R -0.156, p=0.358	R 0.041, p=0.816	Δ (SRS	5)	•)	R	-0.321, p=0.056	R -0.135 $p=0.434$	
Δ(Ε')	R -0.002, p=0.982	R 0.082, p=0.645		;)		R	0.025 n=0.887	R = 0.193 p = 0.259	
Δ (E/E')	R -0.042, p=0.810	R -0.079, p=0.655		·)		D	-0.013 n -0.942	R = 0.058 $p = 0.233$	
Δ (TWIST)	R 0.183, p=0.286	R 0.195, p=0.268				D	-0.241 n=0.162	R -0.056 $p = 0.741$	
Δ (UNTWIST)	R -0.091, p=0.598	R -0.208, p=0.239		119E)		к D	-0.180 p=0.270	R = 0.244 $p = 0.152$	
Δ (SRS)	R -0.181, p=0.292	R -0.141, p=0.426)		ĸ	0.109, μ=0.270	κ-υ.244, μ=υ.152	
Δ (SRE)	R -0.085, p=0.621	R -0.029, p=0.869							
Δ (C_PEAK)	R 0.054, p=0.754	R 0.175, p=0.331							
Δ (C_TIME)	R 0.044, p=0.803	R -0.065, p=0.720							
Δ (GLS)	R -0.287, p=0.095	R -0.039, p=0.826							

were assessed at baseline and at the end of FU period.

Echocardiography (Vivid-7 ultrasound, General Electric)

Δ(LVEF)	Δ (LVMI)

In a population of chronic stable KTRs with not known cardiovascular disease, a worsening in several classic and novel echocardiographic indices of LV function was observed in a *short term FU* indicating probably a subclinical deterioration of cardiac function and an

increased cardiovascular risk.

Interestingly this deterioration was evident

independently of changes in renal function.

Further studies are needed to establish the diagnostic and prognostic role of these novel echocardiographic parameters in clinical practice.

Renal transplantation - Epidemiology & outcome I

Evangelia Ntounousi

DOI: 10.3252/pso.eu.54ERA.2017

