

Metabolically Healthy Obesity is Associated with Incident Chronic Kidney Disease in the General Population

Sangmi Lee¹, Hae-Ryong Yun¹, Hyoungnae Kim¹, Seohyun Park¹, Su-Young Jung¹, Jong Hyun Jhee¹, Chang-Yun Yoon¹, Youn Kyung Kee¹, Jung Tak Park¹, Tae-Hyun Yoo¹, Shin-Wook Kang^{1,2} and Seung Hyeok Han¹

¹Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea ²Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea

Introduction

Obesity and metabolic abnormalities have become a growing concern in the general population. Recent studies have suggested that obese individuals without metabolic abnormalities exhibit a low cardiovascular risk similarly to non-obese healthy individuals. However, it is unknown on the relationship between such different phenotypes and the development of chronic kidney disease (CKD).

SBP [°] (mmHg)₽	121.4±18.4+2	115.0±16.0₽	129.3±19.3₽	117.5±14.9₽	131.7±18.5₽	<0.00
DBP ^f (mmHg)₽	80.2±11.4↔	76.2±10.2+ ²	84.0±11.4₽	78.7±10.0₽	86.6±11.1₽	<0.00
MAP ⁸ (mmHg)₽	107.7±15.5₽	102.1±13.5₽	114.2±15.9₽	104.6±12.7₽	116.6±15.3₽	<0.00
Hemoglobin (g/dl)ਦ	13.5±1.5+	13.3±1.5+	13.7±1.5₽	13.6±1.6+	13.7±1.5+	<0.0
Blood urea nitrogen (mg/dl)+?	14.2±3.5+	14.1±3.6+2	14.1±3.5₽	14.4±3.5₽	14.3±3.5+	0.00
Creatinine (mg/dL)心	0.8±0.1₽	0.8±0.1₽	0.8±0.1₽	0.8±0.1₽	0.8±0.1₽	<0.0
eGFR (ml/min per 1.73 m²)₽	92.8±13.1₽	94.4±12.9₽	91.4±12.4₽	92.5±13.6₽	91.0±12.8₽	<0.0
Fasting Blood Glucose (mg/dl)ਦ	87.1±21.2↔	82.7±12.4↔	93.3±33.7₽	84.5±12.8₽	94.4±27.0₽	<0.0
Total cholesterol (mg/dl)ਦ	190.8±35.5₽	182.6±33.3+2	195.4±37.4₽	190.8±34.0₽	202.7±35.7₽	<0.0
Triglyceride (mg/dl)や	161.9±105.0₽	122.5±66.5₽	209.5±121.7₽	144.7±83.1₽	219.9±128.8₽	<0.0
HDL-C (mg/dl)+기	44.6±10.0₽	47.5±10.4₽	43.2±9.9₽	43.9±9.2₽	40.9±8.4₽	<0.0
Albumin (g/dl)+	4.2±0.3₽	4.2±0.3₽	4.2±0.3₽	4.2±0.3₽	4.2±0.3₽	0.29
Calcium (mg/dl)+ ²	9.6±0.4₽	9.5±0.4₽	9.6±0.4≁	9.5±0.4₽	9.6±0.4≁	<0.0
Sodium (mmol/l)+	142.5±2.1₽	142.4±2.1₽	142.5±2.3₽	142.5±2.1₽	142.6±2.1₽	0.05
Potassium (mmol/l)+	4.4±0.4+2	4.4±0.3₽	4.5±0.4₽	4.4±.4↔	4.4±0.4≁	<0.0
<mark>Chloride (mmol/l)</mark> Ю	102.9±2.3₽	103.1±2.3₽	102.5±2.5₽	103.2±2.2₽	102.7±2.4₽	<0.0
HbA1c (%)↩	5.7±0.9₽	5.5±0.5₽	6.1±1.3₽	5.6±0.5₽	6.1±1.1₽	<0.0
HOMA-IR*↩	1.6±1.2↔	1.3±0.8↔	1.7±1.94⊷	1.5±0.9₽	2.1±1.5₽	<0.0
hs-CRP (mg/l)↩	1.4 [0.7-2.5]₽	1.0 [0.4-1.9]	1.8 [1.3-2.9]	1.1 [0.5-2.2]₽	2.1 [1.4-3.4]	<0.0

Methods

Obesity define as BMI of $\geq 25.0 \text{ kg/m}^2$

Participants were classified into 4 groups MHNO(N=4,904)/MANO(N=1,462)/MHO(N=2,055)/MAO(N=2,193)

Table 2. Hazard ratios for renal outcome according to metabolic phenotypes

¢.	MHNO ⁸ 4 ³	MANO ^b e ³	MHO ^c e?	MAO ^d ₄⊃
Incidence of outcome (n/n)	220/4,094	192/1,461~	151/2,055	279/2,193~
Model 1 ^e √	1.000↔ (Reference)↔	2.744+ (2.261 to 3.331)+	1.350₽ (1.097 to 1.661)₽	2.518₽ (2.110 to 3.005)₽
P-value	-+ ³	<0.001	0.005	<0.001+
Model 2 ^f	1.000↔ (Reference)↔	1.511₽ (1.227 to 1.861)₽	1.294₽ (1.047 to 1.600)₽	1.511↩ (1.299 to 1.858)↩
P-value	-+ ²	<0.001	0.015₽	<0.001₽

Figure 1. A flow diagram of study subjects

We used five clinical categories to define metabolic status; 1) HbA1c \geq 6.5%, history of diabetes, fasting blood glucose \geq 125mg/dL or homeostatic model assessment-insulin resistance \geq 2.5%, 2) triglyceride \geq 150 mg/dL, 3) high-density lipoprotein cholesterol \leq 40 mg/dL in men or \leq 50 mg/dL in women, 4) high-sensitivity C-reactive protein \geq 1 mg/L, or 5) history of hypertension, systolic or diastolic blood pressure \geq 140/90 mmHg. Participants who met \geq 3 categories were considered metabolically unhealthy. Obesity was defined as a body mass index of \geq 25.0 kg/m². Based on the criteria of metabolic abnormality and obesity, participants were classified into 4 groups. The study endpoint was an onset of incident CKD, which was defined as an eGFR of \leq 60 ml/min per 1.73m² for at least \geq 2 measurements during follow-up period.

Results

Model 1e: a crude analysis without adjustement.«

Model 2^f: a full adjusted model including gender, sex, history of hypertension, diabetes, smoking status (never and current or former), mean arterial pressure, hemoglobin, albumin, eGFR, HDL-C, hs-CRP, HOMA-IR, and proteinuria

Abbreviations: MHNO^a, metabolically healthy non-obese; MANO^b, metabolically abnormal non-obese; MHO^c, metabolically healthy obese; MAO^d, metabolically abnormal obese.

The mean age was 52.0 years and 4,666 (47.6 %) were males. During a mean follow-up duration of 8.36 years, primary endpoint occurred in 843 (8.5%) participants; 279 (12.7%), 192 (13.1%), 151 (7.3%), and 220 (5.3%) in MAO, MANO, MHO, and MHNO groups, respectively (P < 0.001). In a multivariable Cox regression after adjustment of confounding factors, MAO [hazard ratio (HR), 1.511; 95% confidence interval (CI), 1.22-1.85; P < 0.001] and MANO (HR, 1.511; 95% CI, 1.22-1.86; P < 0.001) phenotypes were associated with increased risks of incident CKD as compared to

Table 1. Characteristics of study participants at baseline

Dialysis - Epidemiology & outcome I

Sangmi Lee

629--SP

Characteristic ~	Overall₽	Non-obese⊷		Obese 4 ²		P_value.
		MHNO ^a ₄ 3	MANO ^b e ³	MHO ^c ₄)	MAO ^d ₄∂	1 THINET
Participants, n (%)+	9,803₽	4,094 (41.8) ₆	1,461(14.9)	2,055 (21.0)	2,193(22.4)	ته_
Age (year)⊷	52.0±8.8₽	51.0±8.8₽	55.4±9.0₽	50.2±8.0₽	53.5±8.5₽	<0.001₽
Men, n (%)⊦⊃	4,666 (47.6)	2,080 (50.8)	727 (49.8)₽	934 (45.5)₽	925 (42.2)	<0.001₽
Smoking, n (%)₽	4,010 (40.9)	1,774 (43.3)₽	<mark>662 (45.3)</mark> ₽	760 (37.0)₽	814 (37.1)¢	<0.001₽
Body mass index (kg/m²)+?	24.5±3.1₽	22.2±1.8+	22.8±1.6₽	27.0±1.8₽	27.7±2.2₽	<0.001
Hypertension, n (%)₽	1,446 (14.8)	187 (4.6)¢	348 (23.8)	154 (7.5)₽	757 (34 .5)₽	<0.001
Diabetes, n (%)⊬'	<mark>646 (</mark> 6.6)₽	83 (2.0)₽	235 (16.1)₽	<mark>46 (</mark> 2.2)₽	282 (12.9)¢	<0.001
Cerebrovascular accident, n (%)₽	105 (1.1)₽	36 (0.9)₽	21 (1.4)+	14 (0.7)₽	34 (1.6)	0.012+2
Congestive heart failure, n (%)₽	21 (0.2)	<mark>9 (0.2)</mark> ₽	1 (0.1)	3 (0.1)≓	9 (0.4)⊷	0.057₽
Coronary artery disease, n (%)₽	71 (0.7)	24 (0.6)⊮	5 (0.1)⊬	18 (0.9)₽	24 (1.1)	0.031+2

MHNO phenotype In addition, MHO group had a higher risk of CKD

development (HR, 1.294; 95% Cl, 1.04-1.60; P=0.017) than MHNO group,

but comparable risk to MAO and MANO groups.

Conclusion

This study showed that metabolically abnormal phenotypes irrespective of obesity portend a worse prognosis for newly developed CKD. In addition, MHO phenotype is also associated with incident CKD, raising a concern against previous notion that MHO is 'healthy' in the general population.

