EFFICACY AND SAFETY OF PERCUTANEOUS LEFT ATRIAL APPENDAGE CLOSURE IN CHRONIC KIDNEY DISEASE PATIENTS WITH ATRIAL FIBRILLATION: RESULTS OF A 7-YEAR REGISTRY

Miguel Bigotte Vieira¹; Miguel Nobre Menezes²; Ana Rita Francisco²; Cláudia Jorge²; Pedro Carrilho Ferreira²; Luís Carpinteiro²;
Eduardo Infante De Oliveira²; Pedro Canas Da Silva²; António Gomes Da Costa¹; Fausto J. Pinto²;
1 - Centro Hospitalar Lisboa Norte, Serviço de Nefrologia e Transplantação Renal, Lisboa, Portugal;
2 - Hospital Universitário de Santa Maria, CHLN, CAML, CCUL, Faculdade de Medicina, Serviço de Cardiologia, Lisboa, Portugal;

Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, the most devastating complication being thromboembolism leading to fatal or disabling stroke. Although oral anticoagulation (OAC) is the mainstay of prevention therapy in the general population, its benefit in chronic kidney disease (CKD) patients is less well defined. End-stage renal disease patients treated with vitamin K antagonists present increased risk of bleeding, accelerated cardiovascular calcification and increased risk of calciphylaxis. Left atrial appendage closure (LAAC) is performed to prevent complications in high-risk AF patients with contraindications to OAC and in AF patients with events despite OAC.

Objective

Results

To evaluate the efficacy and safety of LAAC in CKD patients with AF.

Figure 1 – WATCHMAN[®] device for left atrial appendage closure

Methods

Single-center registry of consecutive patients submitted to percutaneous LAAC. All patients underwent a standardized clinical follow-up.

Table 1 – Baseline characteristics of the patients

	Non-CKD patients (n=53)	CKD patients (n=39)	P value	
Age, mean ± SD	72.4 ± 6.8	75.1 ± 6.2	0.02	
Male, n (%)	35 (62.1)	24 (56.4)	0.27	
Heart failure, n (%)	15 (28.3)	17 (43.6)	0.26	
Hypertension, n (%)	45 (85.0)	39 (100)	0.27	
<i>Diabetes Mellitus,</i> n (%)	13 (24.5)	12 (30.8)	0.75	
Previous stroke, n (%)	21 (39.6)	19 (48.7)	0.71	
CHA_2DS_2 -VASc, mean ± SD	3.9 ± 1.3	4.7 ± 1.3	<0.001	
HAS-BLED, mean ± SD	3.2 ± 0.8	3.6 ± 0.7	0.047	
CKD – Chronic kidney disease; SD – standard deviation				

Table 2 – *Outcomes* of the patients

- The procedure details, complications, CHA2DS2-VASc and HAS-BLED scores were registered.
- We used the PROTECT-AF trial efficacy composite endpoint defined as the occurrence of stroke, cardiovascular death or systemic embolic events.
- We used the PROTECT-AF trial safety composite endpoint defined as the occurrence of procedure-related complications and major bleeding events.
- CKD patients were defined as patients with estimated glomerular

	Non-CKD patients	CKD patients (n=39)	P value	
	(n=53)			
Composite efficacy endpoint	2	1	0.86	
Stroke	2	1	0.86	
Cardiovascular death	0	0	N/A	
Embolic events	0	0	N/A	
Composite safety endpoint	3	2	0.79	
CKD – Chronic kidney disease; Stroke				

filtration rate below 60 ml/min/1.73 m2 (CKD-EPI).

 Statistical analysis - Mann–Whitney U test, chi-square test, Cox univariate analysis and Kaplan-Meier survival analysis.

Mean *Follow-up = 959 ± 752 days*

Conclusion

Percutaneous LAAC in CKD patients presented, in our cohort, similar outcomes to non-CKD patients. The procedure can be considered as a treatment option in this population.

References

- David R Holmes, Vivek Y Reddy, Zoltan G Turi, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 2009; 374: 534–42.
- David R. Holmes JR, Saibal Kar, Matthew J. Price, et al. Prospective Randomized Evaluation of the Watchman Left Atrial Appendage Closure Device in Patients With Atrial Fibrillation Versus Long-Term Warfarin Therapy The PREVAIL Trial. Journal of the American College of Cardiology. Vol. 64, No 1, 2014

