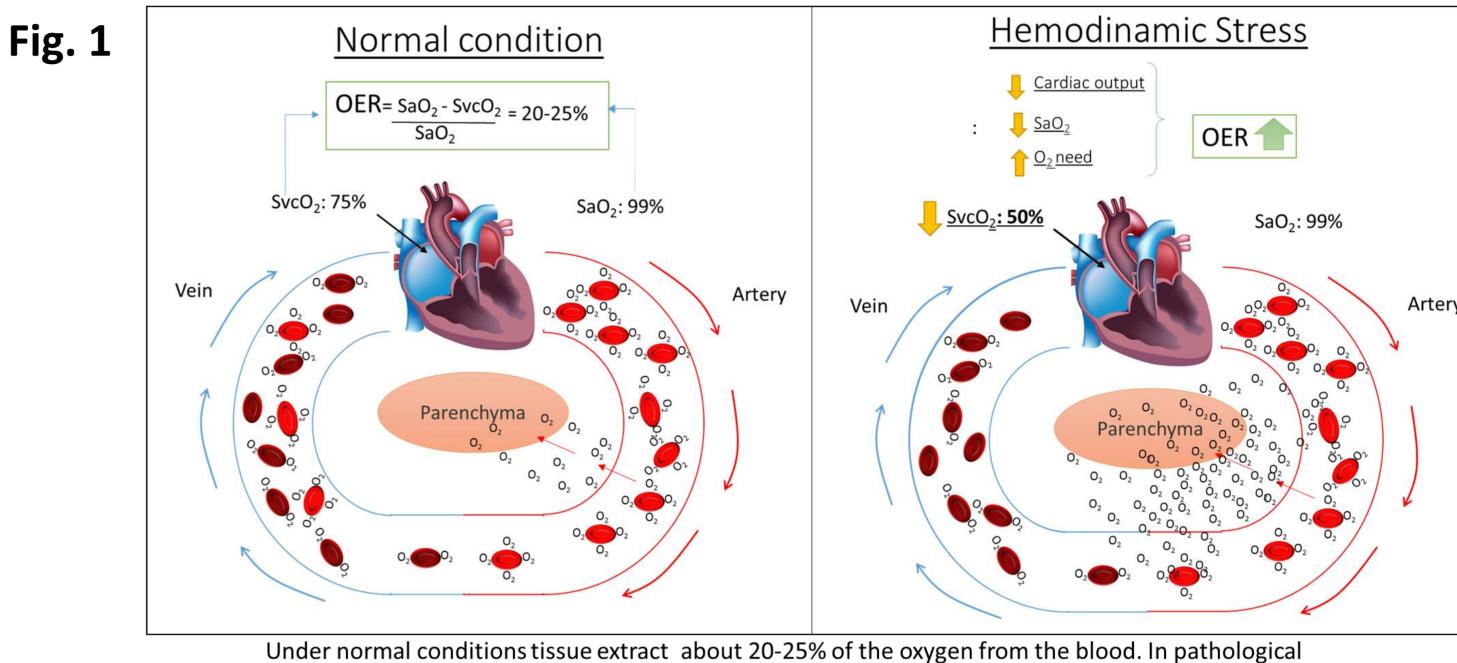
OXYGEN EXTRACTION RATIO (OER): A POSSIBLE PARAMETER TO MEASURE CARDIOVASCULAR (CV) STRESS IN HAEMODIALYSIS (HD).

Rotondi.S¹, Muci M.L. ¹, Tartaglione L. ¹, Carbone L. ¹, Pasquali M². and Mazzaferro S¹.

- ¹Nephrology and Dialysis Unit, ICOT hospital, Polo Pontino Sapienza University of Rome.
- ²Nephrology and Dialysis Unit, Policlinico Umberto I, Rome.


Introduction

- Hemodialysis treatment may cause peripheral tissue hypoxia not routinely evaluated
- \circ Intra-HD hypoxia (Arterial Oxygen saturation, SaO₂, <90%), automatically detected with dedicated sensors, has been reported to associate with increased morbidity and mortality.
- The Oxygen extraction ratio (OER, n.v 20%-25%), obtained with the measurement of SaO₂ and Central Venous Oxygen Saturation (SvcO₂), is routinely employed in ICU to quantify tissue hypoxic stress. Theoretically more sensitive than SaO₂, OER increments may indicate parenchymal hypoperfusion and inadequate adaptation to hypoxia (Figure 1).

Aims

We aimed to evaluate if OER:

- a. increased significantly during HD sessions;
- b. was different between long (HD_{Long}) and short (HD_{Short}) HD intervals;
- c. was differently affected by Isolated UF (iUF) or Isolated Diffusion (iD).

Under normal conditions tissue extract about 20-25% of the oxygen from the blood. In conditions tissue oxygen need increase and extracting oxygen becomes higher.

Methods

We enrolled 20 clinically stable patients on HD since >6 months, with Central Venous Catheter.

We contemporarily sampled arterial SO₂ (by capillary oxymeter) and ScvO₂ (by blood gas analysis) to calculate the OER basally, 15', 30', 60', 120' and end of HD_{Long}.

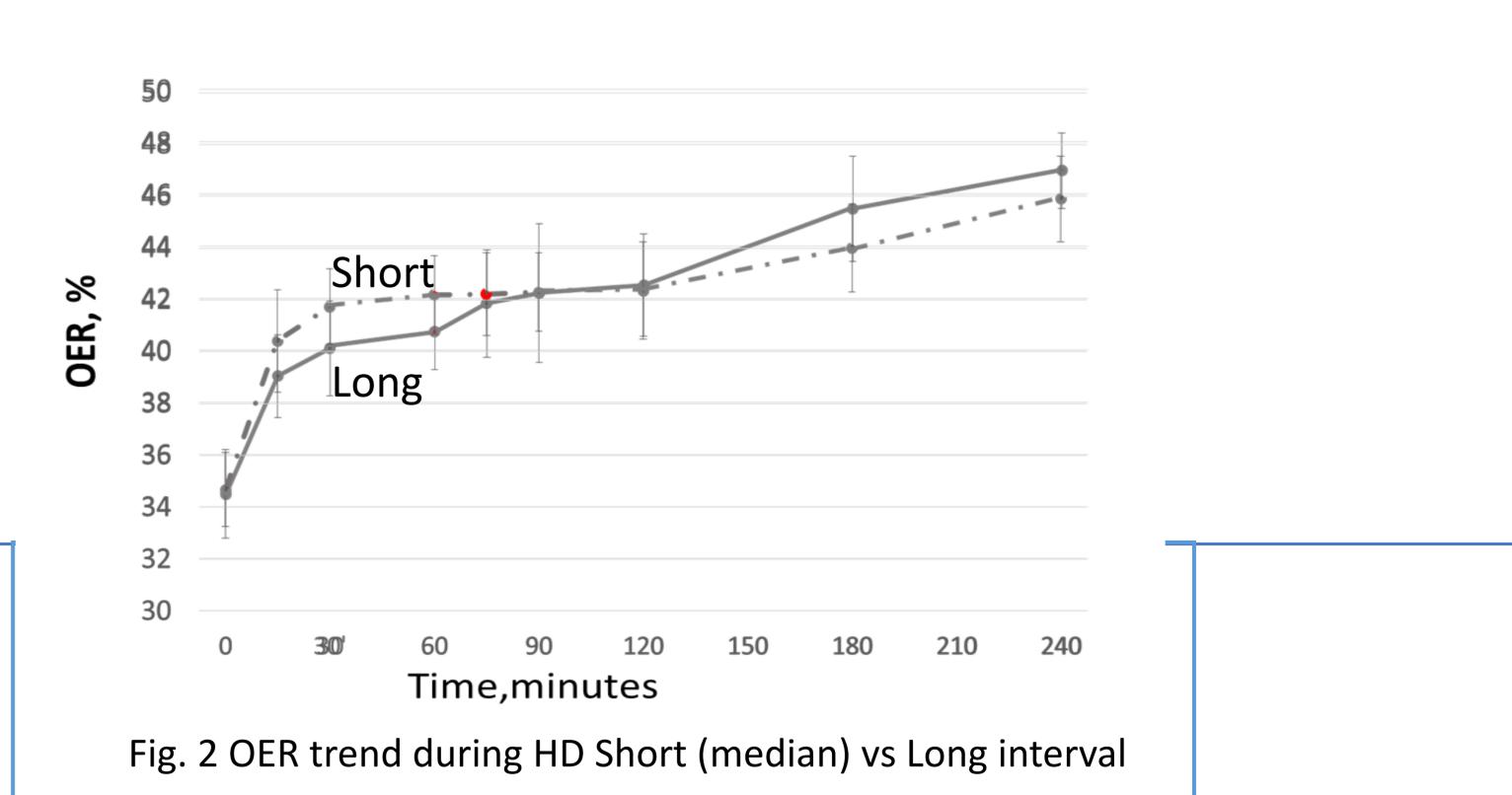
In 10 of them (group A), OER was re-measured in the following two HD_{Short} sessions.

In the other 10 (group B), OER was re-measured during the first hour of the first and second HD_{Short} performed by applying iUF or iD respectively. During each HD, UF rate was kept at<10 ml/kg/h and symptoms were recorded.

Results

Clinical and biochemical features are reported in Tab.1.

In the HD_{Long} session, OER increased within 30' (post hoc test p<.05) and then progressively up to the end of HD, by 38%. Mean basal OER of HD_{Long} (34,4 \pm 7), HD_{Short1} (33,8 \pm 7) and HD_{Short2} (34,2 \pm 7) were not different (Tab.2).


In the two HD_{Short} sessions, OER changes overlapped (no statistical difference) with those in HD_{Long} (Fig.2).

During the first hour of the HD_{Short1} session with iUF, the increment of OER from basal was not significant, at variance with the significant increase recorded during the HD_{Short2} with iD (Tab. 2). Importantly, all HD sessions were asymptomatic with no change (ANOVA = n.s.) in blood pressure (either systolic or diastolic) nor of heart rate. During sessions, no significant change was evident for capillary SO_2 (average 98 ± 1 %), while $ScvO_2$ progressively decreased, thus allowing to refer the recorded O_2 consumption to peripheral extraction and not to other possible causes of systemic SO_2 reduction.

Tab. 1, Patients characterisitics (mean ± SD)						
N.	20					
Men/Females; N (%)	8 (40)/12 (60)					
Age, yr	75±13					
HD Vintage, yr	3,7±3,3					
BMI, Kg/m ²	25,1±5,6					
Comorbidity; N (%)	12 (60)					
ACS, N (%)	2 (10)					
Peripheral ischemia, N (%)	3 (15)					
Cerebral ischemia, N (%)	0					
Diabetes, N (%)	7 (35)					
Hb, g/dl	10,3±1,2					
Calcium, mg/dl	8,5±0,4					
Phosphate, mg/dl	5,2±1,2					
PTH, pg/ml	338±154					
ALP, UI/L	84±26					

HD, type	Paz. (n)	Basale	15'	30'	60 ′	120'	End HD	Anova
HD _{Long}	20	$34,4\pm7$	39,0±7	40,0±8*	40,7 \pm 6#	42,5±8°	46,9±6 ^	.0001
HD _{Short1}	10	33,8±7	40,2±8*	41,3±6#	42,4±5#	42,0±7#	45,9±8°	.004
HD _{Short2}	10	34,2±7	40,6±9	42,2±7*	42,0±8*	42,9±10*	45,9±7°	.003
HD _{Short} , iUF	10	33,0±6	35,9±7	36,6±6	37,5±7			n.s
HD _{Short} , iD	20	32,4±6	37,6±6	38,8±5*	38,4±7			.04

Tab. 2, Mean values of OER. iUF = Isolated Ultrafiltration; iD: isolated diffusion; Bonferroni Post-hoc test vs Basale: *p<.05; # p<.005; ° p<.001; ^ p<.0001

Discussion and Conclusions

- a. Even asymptomatic HD sessions increase O_2 consumption in amounts that are measurable by OER;
- b. HD intervals marginally modify the adaptive process to hypoxia;
- c. iD affects this adaptive response possibly more than iUF.

Our results indicate that OER is a possible marker of HD stress, potentially useful in fragile patients.

