HYPOMAGNESEMIA IN PERITONEAL DIALYSIS - PREVALENCE, CLINICAL ASSOCIATIONS AND MAGNESIUM BALANCE

Liliana Cunha¹, Carla Leal Moreira², Maria João Carvalho², António Cabrita², Olivia Santos², José Carlos Oliveira³, Anabela Rodrigues² ¹Nephrology, Fernando Fonseca Hospital; ²Nephrology, Centro Hospitalar do Porto; ³Clinical pathology, Centro Hospitalar do Porto

SP509

INTRODUTION Lower serum magnesium (SMg) is associated to worse outcomes in dialysis patients (1-4), although pathological mechanisms are not clear. Magnesium deficit seem to induce an inflammatory response in animal models (5) and is associated to higher c-reactive protein in general population (6). SMg represents only 1% of total magnesium and could not be the best marker of magnesium stores. Intra-erythrocyte Mg (EMg) is presumably a better marker of body stores than serum Mg (7). We hypothesized that dialysis prescription, such as solution composition and diuretic use, could change magnesium balance with biological impact.

AIM: 1) determine hypomagnesemia prevalence by both SMg/EMg methods; 2) explore correlation with comorbidity, nutrition and inflammation; 3) investigate magnesium (SMg and EMg) association with transport rate, dialysis schedule, ultrafiltration, residual renal function (RRF) and peritoneal magnesium removal and urinary magnesium.

METHODS -> Cross-sectional study of all stable peritoneal dialysis patients follow for at least 3 months. Phosphate binders without Mg were used.
-> They were dialyzed under low-GDPs PD solutions, 56% bicarbonate/lactate Baxter (Mg 0.25 mmol/l), 44% lactate Fresenius (Mg 0.5 mmol/l).
-> Hypertonic dialysis – it is used more than 1 solution with glucose ≥ [2.5%]
-> Clinical variables, labs (inflammation, nutrition and fosfocalcium metabolism) bioimpedance and dialysis prescription were evaluated.

-> Daily urinary Mg (UMg) and daily Peritoneal Mg Flux (mmol/24h) (PMF) were measured and a subgroup of 40 pts underwent.

-> Flux (mmol/exchange) = (Di x Vi) - (Do x Vo), Di and Do are the dialysate Mg concentration in the inflow and outflow (mmol/L) and Vi and Vo are the dialysate inflow and outflow volumes (L), negative values reflecting peritoneal removal.

-> Statistical analysis used SPSS 20.0, p values less than 0.05 were considered significant.

-> Explored the association of the variables with SMg and EMg. In statistic significant associations we did multivariate analysis by linear regression.

Table1 – Patients characteristics

Total (n=52)
51 (41-62)
27 (52)
22 (13-52)
3 (2-4)
6 (11.3)
33 (60.4)
29 (54.7)/23 (43.4)
12 (22.6)
23 (44)/29 (56)
27 (51.9)
41 (77.4)
8.72 (5.8-12.8)
1.29 (1-1.8)
1.37 (1.12-1.74)
0.85 (0.23-1.28)
160 (80-240) n=40
3.06 (0.74-5.84)
0.9 (0.78-1)
1 (1.9)/4 (7.7)
2.7 (2.4-3)
1 (1.9)/26 (50)
1.15 (0.5-1.8)
-1.99 (-2.65-(-1.43))
1.06 (0.89-1.3)
4 (3.8-4.2)
8.7(6.8-12.1)
3.2(0.7-9.3)
2.2 (2-2.3)
1.5(1.29-1.9)
521.4(303.5 - 665.5)
26.1 (22.85 – 29.1) 12.6 (11.5-15.4)
11.4 (8.7-16.3)
18.9 (15.2-21.5)
17.1 (14.1-18.9)
19.6 (15.6-26.3)

RESULTS

Table 3 – Correlation with SMg and EMg

Variable	SMg		EMg	
variable	R2	p value	R2	p value
Age (years)	-0.11	ns	-0.253	ns
Peritoneal dialysis vintage(m)	-0.093	ns	0.063	ns
Charson Comorbility Score	-0.093	ns	-0.147	ns
Daily exchange volume (L)	0.083	ns	0.301	0.032
Daily ultrafiltration (L)	0.086	ns	0.02	ns
Peritoneal Kt/V	0.206	ns	0.195	ns
Daily urine volume (L)	-0.153	ns	-0.221	ns
Daily furosemide (mg)	-0.004	ns	-0.089	ns
RRF (mL/min/1.73m ²)	-0.11	ns	-0.286	0.040
SMg (mmol/L)	-	-	0.464	0.001
EMg (mmol/L)	0.464	0.001	-	-
UMg (mmol/24h)	0.112	ns	0.055	ns
Perit Mg Flux (mmol/24h)	-0.508	0.001	-0.753	< 0.001
nPNA (g/kg/day)	0.066	ns	0.128	ns
Albumin (g/dL)	0.104	ns	0.204	ns
Creatinine (mg/dL)	0.242	ns	0.461	0.001
C-reactive protein (mg/dL)	0.118	ns	-0.044	ns
Ferritine (ng/dL)	0.057	ns	-0.024	ns
Calcium (mmol/L)	0.193	ns	-0.01	ns
Phosphorus (mmol/L)	0.302	0.033	0.502	< 0.001
PTH (pg/mL)	-0.237	ns	0.047	ns
Lean tissue index (kg/m ²)	-0.011	ns	0.282	0.043
Fat tissue index (kg/m²)	-0.09	ns	-0.043	ns
Intra-celular water (L)	-0.134	ns	0.227	0.047
Extra-celular water (L)	-0.253	0.071	0.174	ns
Body cell mass (Kg)	-0.071	ns	0.267	0.056

Table 2 – SMg and EMg according to categorical variables

Variable	SMg	p value	EMg	p value
Male	0.9 (0.7-1)	20	2.9 (2.6-3.2)	200
Female	0.9 (0.78-1)	ns	2.6 (2.4-2.8)	ns
Diabetes				
Yes	0.9 (0.73-1)	ns	2.8 (2.4-3.3)	ns
Νο	0.9 (0.74-1)		2.7 (2.4-3)	
Anuric				
Yes	0.9 (0.7-1.1)	ns	2.7 (2.4-3)	ns
No	0.9 (0.8-1)		2.7 (2.4-3.4)	
CAPD	0.8 (0.7-0.9)	20	2.7 (2.4-3)	00
APD	0.9 (0.79-1.03)	ns	2.7 (2.5-3.2)	ns
Fresenius	0.9 (0.8-1.1)	0.028	2.7 (2.4-3.1)	00
Baxter	0.8 (0.7-0.9)	0.028	2.7 (2.6-3)	ns
Icodextrin				
Yes	0.8 (0.7-0.9)	ns	2.8 (2.6-3)	ns
Νο	0.9 (0.8-1.03)		2.6 (2.4-3)	
≥2.5% glicose	9			
Yes	0.9 (0.8-1)	ns	2.8 (2.5-3)	ns
No	0.8 (0.7-0.9)		2.6 (2.2-2.9)	

Table 4 – Multivariate model for predictor factor for EMg (linear regression- R2=0.630, constant=0.488, p<0.001, n=40)

Variable	B coeficient	p value
RRF	-0.314	0.172
Fresenius/Baxter	-0.226	0.823
Daily exchange volume (L)	-0.141	0.494
Creatinine (mg/dL)	-0.162	0.503
Phosphorus (mmol/L)	0.274	0.121
Lean tissue index (kg/m ²)	0.071	0.881
Intra-celular water (L)	0.218	0.678
Body Cell Mass (Kg)	0.047	0.953
SMg (mmol/L)	0.304	0.076
Perit Mg Flux (mmol/24h)	-0.409	0.028

Table 5 – Multivariate model for predictor factor for SMg (linear regression - R2=0.489, constant=0.502, p value<0.001, n=40)

Variable	B coeficient	p value
EMg (mmol/L)	0.262	0.153
Fresenius/Baxter	0.468	0.001
Phosphorus (mmol/L)	-0.005	0.970
Daily exchange volume (L)	-0.116	0.522
	0 470	0 04 0

All variables included in the model were found to be significant in the univariate analysis except for the type solution used that was forced to the model.

Perit Mg Flux (mmol/24h) -0.476 **0.016**

All variables included in the model were found to be significant in the univariate analysis except for the daily exchange volume that was forced to the model

DISCUSSION/CONCLUSION

- Hypomagnesaemia was infrequent in our population with both SMg and EMg. HyperMg was more frequent with EMg.
- EMg seems to better reflect the expected associations with nutritional parameters but was not associated with comorbidity or inflammation.
- The use of solutions with [Mg] 0.5mmol/L (Fresenius) versus 0.25mmol/L (Baxter) was associated with higher levels of SMg but not EMg. This result was also described in other studies (7).
- Ultrafiltration, hypertonic dialysis (≥2.5% glucose) or the use of icodextrin do not seem to influence magnesium levels, although hypertonic dialysis has been identified as a risk factor for hypomagnesaemia in another study (402 CAPD patients) (8).
- SMg and EMg were independently associated with the peritoneal magnesium flux. More negative peritoneal magnesium flux (higher magnesium extraction) the higher SMg/EMg.
- Peritoneal Mg diffusive removal is significantly related with SMg/EMg.

References: 1 - Kidney International (2014) 85, 174–181; 2 - Clin Kidney J (2012) 5[Suppl 1]: i52–i61; 3 - Advances in Peritoneal Dialysis, Vol. 30, 2014; 4 - Am J Kidney Dis. 2016 Oct;68(4):619-27; 5 - Magnesium Research 2009; 22 (2): 57-9; 6 - Journal of the American College of Nutrition, Vol. 24, No. 3, 166–171 (2005); 7 - Clin Kidney J (2012) 5[Suppl 1]: i39–i51; 8- Perit Dial Int. 2013 Jul-Aug; 33(4): 450–454.

DOI: 10.3252/pso.eu.54ERA.2017

