DIFERENCIES IN BISPHENOL A (BPA) SERUM LEVELS IN ONLINE HEMODIAFILTRATION HEMODIALYSIS (HDF) PATIENTS WITH TWO DIFFERENT **MEMBRANES**

<u>Sebastian Mas¹</u>, Enrique Bosch-Panadero¹, Alberto Ruiz-Priego¹, Pedro Abaigar², Vanesa Camarero², Ignacio Mahillo¹, Esther Civantos¹, Didier Sanchez-Ospina¹, Jesus Egido¹, Alberto Ortiz¹, Emilio González-Parra¹

> ¹ FUNDACIÓN JÍMENEZ DÍAZ, Nephrology, Avda. Reyes Católicos, 2. 28040, Madrid, Spain ² HOSPITAL UNIVERSITARIO DE BURGOS, Nephrology, Avda. Islas Baleares, 3. 09006, Burgos, Spain

INTRODUCTION

METHODS

In uremia, the environmental toxin Bisphenol A (BPA) accumulates bound to proteins. BPA-containing dialyzers contribute to increase plasma BPA concentration in conventional hemodialysis patients. Online hemodiafiltration (OL-HDF) more efficiently clears high molecular weight molecules, and this may improve BPA clearance. However, OL-HDF requires high infusion volumes of replacement fluid generated online by using BPA-containing membranes and, thus, can be a source of BPA load. Our aim was to assess plasma BPA levels in OL-HDF patients using BPAfree or BPA-containing dialyzers.

In a prospective study, plasma BPA was assessed at baseline and 3 months after switching from baseline BPA-free to BPA-containing polysulfone (n=31) dialyzers, or from baseline polysulfone to polynephron (n=27) dialyzers in OL-HDF patients. Results were compared to a prior study on conventional hemodialysis.

Study design: timing of plasma sampling for BPA assessment

(Baseline (>6 mo.)	3 months	
	PS-to-PN			
	31 patients			
		Baseline Sampling		3 mo.
	PN-to-PS			PRE POST
	27 patients			
		PS MEMBRANE	PN MEMBRANE	

RESULTS

OL-HDF patients had lower plasma BPA than those in conventional hemodialysis (12.12 ± 15.91 vs. 64.55 ± 93.8 ng/mL) and both were several fold higher than healthy controls (<2 ng/ml). However, this was influenced by the dialysis membrane. Thus, baseline BPA was 8.79 ± 7.97 ng/ml in patients dialyzed ≥ 6 months with polynephron versus 23.42 ± 20.38 ng/mL with polysulfone. During the first single OL-HDF session with the switch membrane, BPA decreased in the polysulfone-to-polynephron group (pre-dialysis 23.42 ± 20.38 ng/ml to post-dialysis 6.44 ± 10.77 ng/mL), but remained unchanged in polynephron-to-polysulfone patients. After 3 months on polysulfone, BPA levels rose non-significantly from 8.79 ± 7.97 to 11.02 ± 16.17 ng/mL in the polynephron-to-polysulfone group, while they decreased 51% in the polysulfone-to-polynephron group.

Plasma BPA is lower in OL-HDF than in conventional hemodialysis patients

Plasma BPA concentration is affected by time of exposure to the different membranes

** ** 50-PS-to-PN

HDF with polynephron (PN) or polysulfone (PS) membranes. Pre- and post-dialysis measurements are shown for the first (baseline) and the last (3-month) session after the switch interval. Prior to the baseline pre-dialysis sample, patients had been on OL-HDF with the opposite membrane for >6 months. Thus, baseline pre-dialysis values represent values corresponding to >6 months OL-HDF with the opposite membrane and were used as baseline values for the switch study, while baseline postdialysis values were already obtained after the first session with the switch membrane.

Variable	Basal	3 mo.	Basal + 3 mo.
KTV	0.02 (0.911)	-0.03 (0.799)	-0.01 (0.876)
Leu	-0.03 (0.818)	-0.11 (0.418)	-0.08 (0.396)
Hb	0.05 (0.693)	-0.06 (0.639)	0.00 (0.991)
X25OHD	-0.20 (0.128)	-0.15 (0.274)	-0.19 (0.043)
Prot.T	-0.22 (0.099)	-0.07 (0.623)	-0.15 (0.120)
Albumin	-0.06 (0.660)	-0.09 (0.526)	-0.09 (0.346)
Ca	0.06 (0.663)	0.06 (0.639)	0.06 (0.520)
Р	-0.17 (0.208)	-0.06 (0.672)	-0.11 (0.238)
Col	0.02 (0.877)	-0.05 (0.710)	0.02 (0.866)
TGD	-0.09 (0.491)	-0.06 (0.679)	-0.06 (0.548)
PCR	-0.01 (0.964)	0.04 (0.758)	0.03 (0.783)
PTH	0.00 (1.000)	-0.20 (0.127)	-0.12 (0.217)
Blood sugar	0.18 (0.171)	-0.10 (0.484)	0.07 (0.483)
BMI	-0.10 (0.482)	-0.15 (0.258)	-0.12 (0.194)
TSH	0.08 (0.543)	0.15 (0.251)	0.10 (0.303)
Т3	0.13 (0.333)	-0.25 (0.066)	-0.14 (0.154)
T4	0.03 (0.823)	-0.05 (0.690)	-0.04 (0.672)
Cortisol	-0.01 (0.946)	0.04 (0.768)	0.02 (0.857)
Aldosterone	-0.15 (0.250)	0.18 (0.175)	0.06 (0.508)

recorded clinical variables and p value (brackets) fot its patients in hemodiafiltration.

coefficient between BPA and

CONCLUSIONS

Optimal reduction in BPA levels is achieved by using OL-HDF with BPA-free dialyzer membranes. Attempts at optimizing net BPA clearance in OL-HDF are justified by the residual higher plasma BPA levels when compared to healthy control.

