# SALT-DEPENDENT HYPERTENSION: A COMPARISON OF THE RENAL PROTEOME BETWEEN WISTAR AND SPRAGUE-DAWLEY RATS IN RESPONSE TO HIGH SODIUM DIET

Gawrys O<sup>1</sup>, Ozgo M<sup>2</sup>, Lepczynski A<sup>2</sup>, Herosimczyk A<sup>2</sup>; Marynowska M<sup>2</sup>; Kompanowska-Jezierska E<sup>1</sup>

Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland <sup>2</sup> Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland

## INTRODUCTION AND AIMS

High salt intake constitutes one of the major risk factor for arterial hypertension. There is vast evidence that high sodium intake causes differential blood pressure responses in individual subjects: some can be described as salt-sensitive and some as salt-resistant. However, the background of this variability is still unknown.

Our earlier experiments (unpublished data, Fig.1) showed that 21 days' exposure to high salt diet (HS) induced a significant blood pressure elevation (tail cuff method) in normal Wistar (W) but not in Sprague-Dawley (S-D) rats. These unexpected results inspired us to investigate the subject further and to employ the proteomic approach. In hope to unravel the basis of variable susceptibility to sodium. We have undertaken: first, to identify the potential differences in basal protein content, especially in renal medulla (the region allegedly crucial for blood pressure control) between S-D and Wistar rats fed standard diet (0.25% Na, STD). Second, to determine the possible changes in renal protein expression in response to high sodium diet (4% Na, HS) in both strains.

## RESULTS



## METHODS

#### Time (days)

Fig.1: Systolic blood pressure (SBP) of Wistar (W) and Sprague-Dawley (S-D) rats fed high sodium diet (HS) for 21 days; \* significant for W/HS versus S-D/HS group, # significant in comparison to the value on the day "0" for W/HS group; ANOVA with repeated measurements, followed by Duncan *post-hoc* test (STATISTICA, version 10.0, StatSoft Inc.).

Fig.2: Kidney weight to body weight ratio (%) of Wistar (W) and Sprague-Dawley (S-D) rats fed high sodium (HS) or standard diet (STD) for 28 days; **§** significant for W/HS in comparison to W/STD group, one-way ANOVA.

Analysis revealed 47 differentially expressed proteins in Wistar rats fed HS diet (29 down-regulated and 18 up-regulated) out of which 28 were identified, whereas in S-D/HS group we observed only 28 (16 down-regulated and 12 up-regulated) out of which 11 was identified

| The experimental groups were as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Accession no     |                                                                       | STD vs. HS          |                     | Accession no     |                                                                    | STD vs. HS   |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|---------------------|---------------------|------------------|--------------------------------------------------------------------|--------------|--------------------|
| <b>W/SID</b> Wistar rats fed standard diet<br><b>S-D/STD</b> Sprague-Dawley rats fed standard diet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UniProt/NCB      | í Protein name<br>I                                                   | Wistar              | Sprague-<br>Dawley  | UniProt/NCBI     | Protein name                                                       | Wistar       | Sprague-<br>Dawley |
| <b>W/HS</b> Wistar rats on high sodium diet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energetic        | metabolism-related proteins                                           |                     | 5                   | Cell redox       | homeostasis and response to                                        | stress       |                    |
| S-D/HS Sprague-Dawley rats on high sodium diet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P04639           | Apolipoprotein A-I                                                    | 0.71                | 1.26                | P62260           | 14-3-3 protein epsilon                                             | 0.75         | 0.66               |
| After four weeks' exposure to either diet the animals were sacrificed and the kidneys were excised and weighed; the renal medulla and the cortex were dissected and frozen separately (-80°C). Medullary proteins were separated using two-dimensional electrophoresis, followed by the identification of statistically valid protein spots with the aid of MALDI-TOF mass spectrometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P02650<br>P10959 | Apolipoprotein E<br>Carboxylesterase 1C                               | 0.59<br><b>0.49</b> | <b>0.29</b><br>0.47 | P34058           | Heat shock protein HSP 90-<br>alpha                                | 0.48         | 0.94               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 088989           | Malate dehydrogenase,<br>cytoplasmic                                  | 0.34                | 1.15                | P61980           | Heterogeneous nuclear<br>ribonucleoprotein K                       | 0.98         | 0.57               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P48500           | Triosephosphate isomerase                                             | 0.06                | 1.17                | P04785           | Protein disulfide – isomerase                                      | 0.62         | 0.49               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P10719           | ATP synthase subunit beta,<br>mitochondrial                           | 2.15                | 0.80                | P11598           | Protein disulfide – isomerase A3<br>T-complex protein 1 subunit    | 0.46         | 0.49               |
| Kidney   collection   Image: Second sec | P04764           | Alpha-enolase                                                         | 1.39                | 1.15                | Q5XIM9           | beta                                                               | 0.45         | 1.83               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P0/335           | Creatine kinase B-type                                                | 1.85                | 1.41                | Q920J4           | Thioredoxin-like protein T                                         | 0.82         | 0.28               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P08461           | Dihydrolipoyllysine-residue<br>acetyltransferase component of         | 164                 | 147                 | P97532           | 3-mercaptopyruvate<br>sulfurtransferase                            | 1.03         | 3.50               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | pyruvate dehydrogenase<br>complex, mitochondrial                      | 1.01                | 1.12                | P54311           | Guanine nucleotide-binding<br>protein G(I)/G(S)/G(T) subunit       | 1.39<br>1.32 | 1.04<br>1.42       |
| Analysis of variability Gel scanning<br>between groups (GS-800TM electrophoresis<br>(PDQuest Advanced 8.0.1) Densitometer (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P56574           | lsocitrate dehydrogenase<br>[NADH], mitochondrial                     | 1.86                | 1.33                | P63018           | beta-1<br>Heat shock cognate 71 kDa                                | 1.85         | 1 76               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | NADH dehydrogenase                                                    |                     |                     | F03010           | protein                                                            | 1.00         | 1.20               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q641Y2           | [ubiquinone] iron-sulfur protein<br>2, mitochondrial                  | 1.12                | 1.66                | Q3KR86           | MICOS complex subunit Mic60<br>(fragment)                          | 1.85         | 0.96               |
| identification Gene ontology<br>MALDI-TOF MS (STRING, UniPort)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P49432           | Pyruvate dehydrogenase E1<br>component subunit beta,<br>mitochondrial | 1.79<br>2.18        | 1.02<br>0.86        | Q66HF1           | NADH-ubiquinone<br>oxidoreductase 75 kDa subunit,<br>mitochondrial | 1.46<br>2.26 | 0.81<br>0.99       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | oteins                                                                |                     |                     | Q63081           | Protein disulfide-isomerase A6                                     | 0.74         | 1.34               |
| CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Antithrombin-III isoform X1                                           | 0.60                | 0.46                | P67779           | Prohibitin                                                         | 1.31         | 2.06               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                       |                     |                     | Cytoskele        | tal and related proteins                                           |              |                    |
| studies suggest that Wistar rats are more susceptible to high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P04897           | Guanine nucleotide-binding<br>protein G(i) subunit alpha-2            | 0.63                | 0.43                | Q63610<br>P09495 | Tropomyosin alpha-3 chain<br>Tropomyosin alpha-4 chain             | 0.50<br>0.72 | 0.85<br>0.52       |
| sodium intake compared to Sprague-Dawley rats. One of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NP 001100        | ) Glucosidase 2 subunit beta                                          |                     |                     | P60711           | Actin cytoplasmic 1                                                | 5.34         | 1.02               |
| the reasons for S-D rats' resistance to salt loading might be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 276              | precursor                                                             | 0.72                | 0.35                |                  |                                                                    |              |                    |
| more effective mobilization of proteins acting against oxidative stress and decreased AT1-R availability, due to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P20059           | Hemopexin                                                             | 0.48<br>0.50        | 0.79<br>1.19        | In               | S-D/HS group, amor                                                 | ng p         | proteins           |



activity of hemopexin.

upregulated in response to HS diet were the 0.63 molecules involved in the response to oxidative 0.42

### REFERENCES

- 1. Ando K, and Fujita T (2012) Pathophysiology of salt sensitivity hypertension. Ann *Med* **44 Suppl 1**:S119–26.
- 2. Campese VM (1994) Salt sensitivity in hypertension. Renal and cardiovascular implications. *Hypertension* **23**:531–550.
- 3. Choi HY, Park HC, and Ha SK (2015) Salt sensitivity and hypertension: A paradigm shift from kidney malfunction to vascular endothelial dysfunction.
- 4. Drenjacnevic-Peric I, Jelaković B, Lombard JH, Kunert MP, Kibel A, and Gros M (2011) High-salt diet and hypertension: Focus on the renin-angiotensin system.
- 5. Felder R a, White MJ, Williams SM, and Jose P a (2013) Diagnostic tools for hypertension and salt sensitivity testing. *Curr Opin Nephrol Hypertens* 22:65–76.
- 6. Garrido C, Gurbuxani S, Ravagnan L, and Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433-442.
- 7. Krikken J a, Lely AT, Bakker SJL, Borghuis T, Faas MM, van Goor H, Navis G, and Bakker WW (2013) Hemopexin activity is associated with angiotensin II responsiveness in humans. J Hypertens 31:537–42.
- 8. Tian Z, Greene AS, Usa K, Matus IR, Bauwens J, Pietrusz JL, Cowley AW, and Liang M (2008) Renal regional proteomes in young Dahl salt-sensitive rats. *Hypertension* **51**:899–904.
- 9. Zhou T-B, Qin Y-H, Lei F-Y, Huang W-F, and Drummen GPC (2013) Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury. *Sci Rep* **3**:3123.

|        | P05544                    | Serine protease inhibitor A3L | 0.47 | 0.42  |
|--------|---------------------------|-------------------------------|------|-------|
| Q9EQT5 | $\bigcirc 9F \bigcirc T5$ | Tubulointerstitial nephritis  | 174  | 036   |
|        | antigen - like            | 1.2 1                         | 0.50 |       |
|        | P55260                    | Annexin A4                    | 1.33 | 0.74  |
|        | Q62667                    | Major vault protein           | 2.07 | 1.77  |
| Q637   | 062700                    | Proteasome activator complex  | 1 74 | 1 4 1 |
|        | Q03770                    | subunit 2                     | 1.20 | 1.01  |
| P      | DAAAA7                    | Transitional endoplasmic      | 2.00 |       |
|        | F4040Z                    | reticulum ATPase              | 2.07 | 0.52  |
|        |                           |                               |      |       |

EDM18039 Hemopexin, isoform CRA\_f

stress: **prohibitin** (gene name: Phb), 3mercaptopyruvate sulfurtransferase (Mpst) or NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (mitochondrial; Ndufs2). In Wistar rats the expression of these proteins was not elevated after exposure to high sodium intake.

Interestingly, hemopexin, an acute phase protein, was down-regulated after high-sodium intake only in Wistar rats. Recent study shows that active hemopexin might be considered as a potential determinant of Ang II responsiveness, therefore it might influence the Ang II-mediated hypertension by decreasing AT1-R availability. The effects of a high-salt diet are related to the function of the reninangiotensin system, which is normally suppressed by a high-salt diet, however the exact mechanisms remain unclear. Possibly, hemopexin decreases AT1-R availability in S-D rats, supporting the maintenance of normal blood pressure level, which makes S-D rats more resistant to sodium overload.

0.47

