MIXED HAEMODIAFILTRATION: LONG-TERM EFFECTS on EFFICIENCY and SURVIVAL. A 4-YEAR COHORT STUDY

Luciano A. Pedrini¹, on behalf of the Italian NephroCare Study Group on HDF. ¹ Nephrology and Dialysis, NephroCare, Seriate, Italy.

INTRODUCTION

Recent large trials¹⁻³ have suggested that post-dilution haemodiafiltration (post-HDF) may reduce mortality of chronic dialysis patients by ~30% provided that high convective volume is achieved (CV = 20-23 L/session).

In **Mixed HDF** simultaneous infusion at pre- and post-dilution ports of the haemofilter promotes achievement of the highest CV and similar/higher efficiency than post-HDF, while avoiding dangerous haemoconcentration by means of a TMP feedback system which modulates infusion rate and site according to the patient and operating conditions (Q_B, Htc, membrane surface and permeability) ⁴⁻⁷.

PATIENTS and METHODS

334 Patients of 21 NephroCare Centres (102 F, 232 M), aged 64±13, range 22-88, on Mixed HDF for at least 4 months, from May 2011 to May 2016.

NephroCare

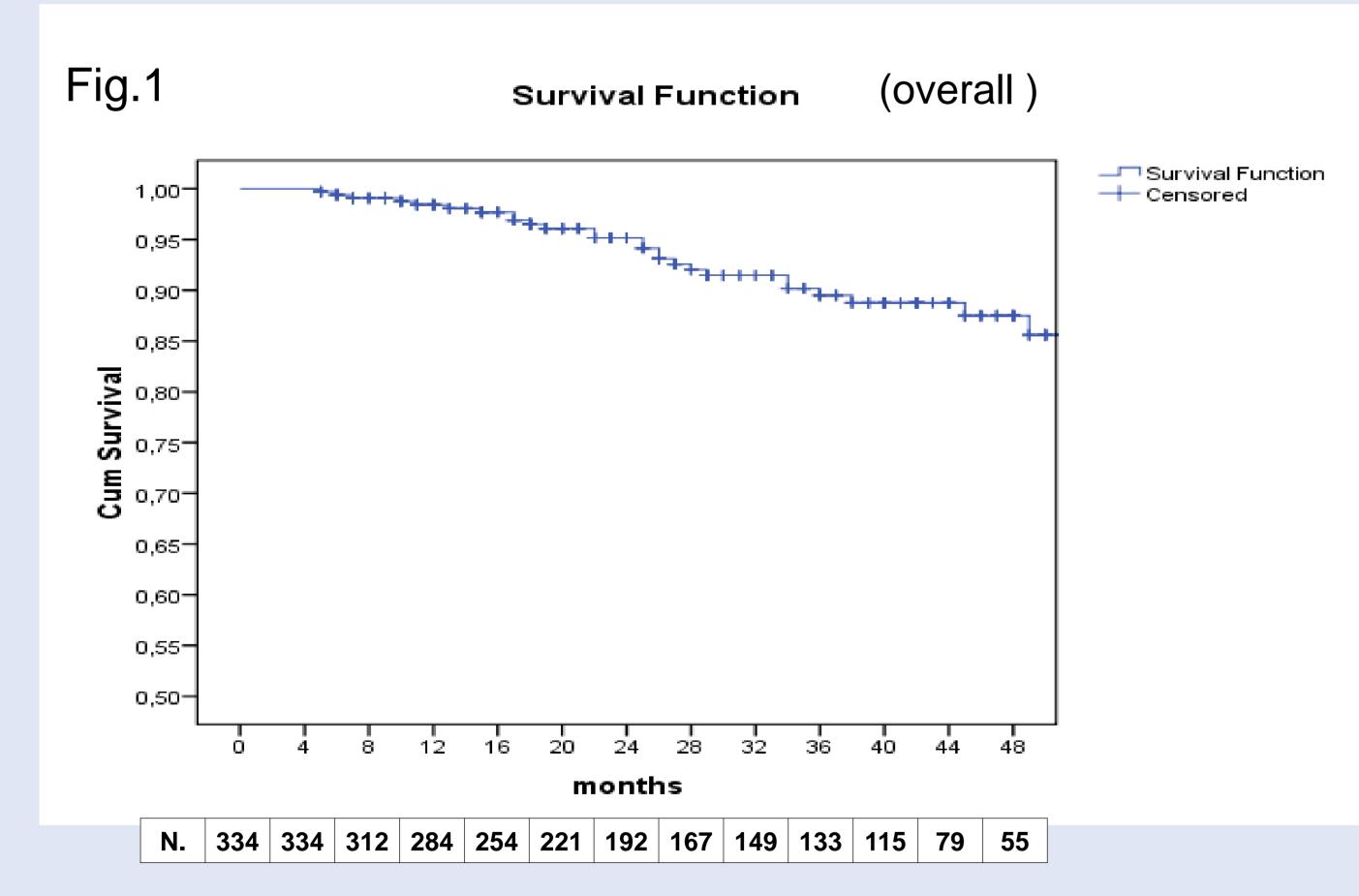
Madrid, Spain

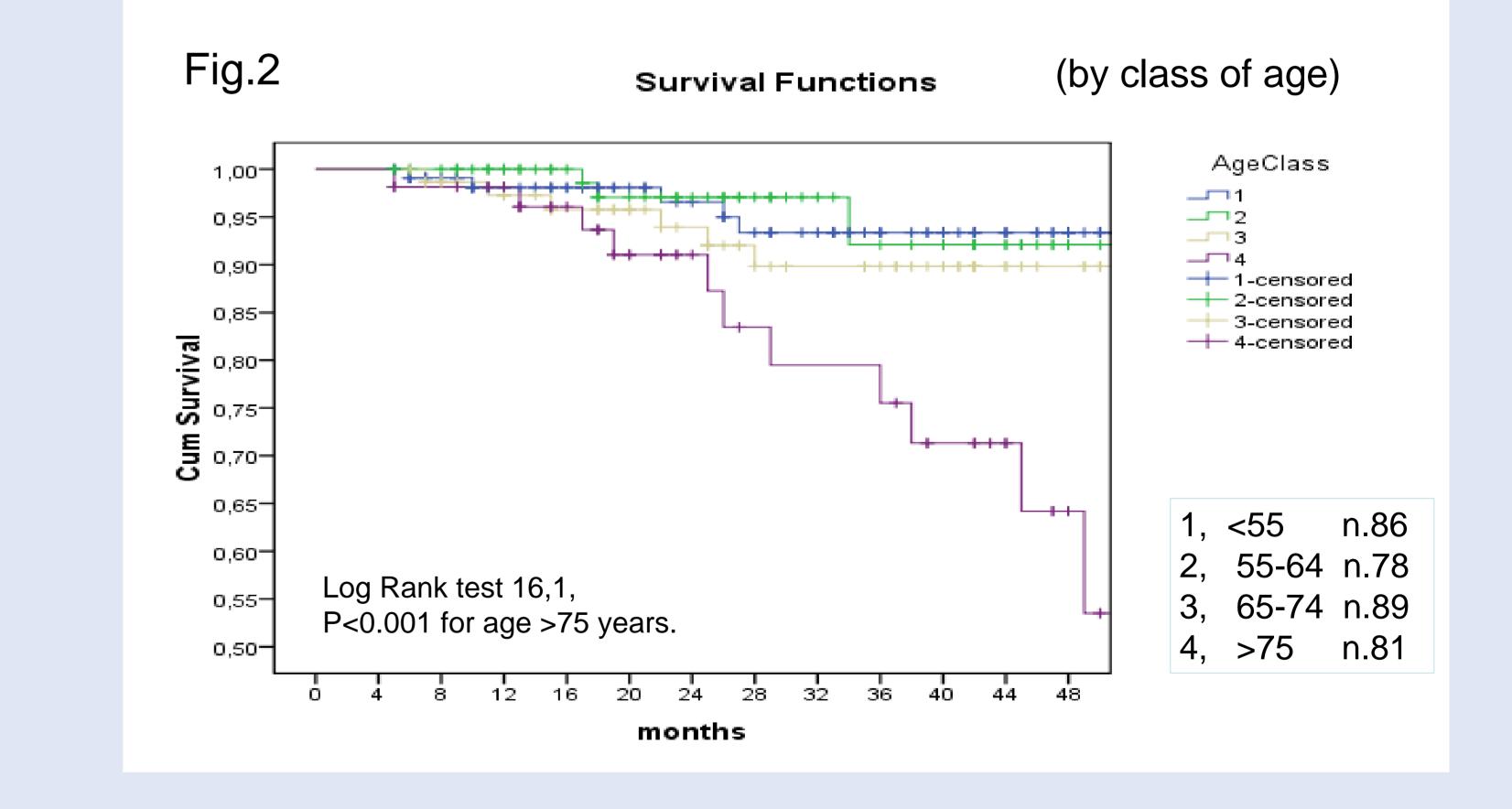
June 3rd-6th 2017

- 45 Renal transplantation
- 59 Change technique
- **146** 17 *Transferred to other Centres / lost to follow-up* 25 DEAD

AIM OF THE STUDY : to evaluate the results of a four-year application of Mixed HDF in a large cohort of patients of 21 Dialysis Centres

188 Patients on Mixed HDF at May, 31th, 2016


Mean follow-up: 31.4± 21.9 months; median: 27,5 months; range : 4-168 months.


Lab. analyses were monitored and extracted from a data-base every 4 months. Patient and operational parameters were recorded on-line at each session and averaged per month. Kaplan Meier survival analysis was performed as overall and by class of age.

RESULTS

The mean observation period covered more than 120,000 Mixed HDF sessions. Mean blood flow rate (QB) was 393±40 ml/min, session time 239±7 min., dry body weight 73±13 kg. Trend of CV, markers of small and middle molecule removal (Kt/V and β2-microglobulin reduction ratio), and nutritional, and anaemia status throughout the follow-up are in Table.

months	0	4	8	12	16	20	24	28	32	36	40	44	48
Conv.Volume, L/sess.	39,6	40,3	40,0	39,9	<mark>39,8</mark>	40,2	39,8	40,0	39,6	39,0	38,4	38,2	39,4
spKt/V	1,82	1,89	1,90	1,91	1,90	1,93	1,89	1,93	1,91	1,87	1,85	1,88	1,90
β2-M R.Ratio,%	80,3	80,8	80,2	81,2	81,7	81,6	81,6	81,3	81,3	81,0	80,6	80,5	80,4
β2-M basal, mg/L	25,1	24,7	25,3	25,8	25,3	25,1	25,2	25,2	26,0	26,8	26,6	27,1	26,9
Hb, g/dl	11,6	11,7	11,7	11,8	11,6	11,6	11,6	11,6	11,6	11,6	11,9	11,7	11,6
Albumin, g/dl	3,7	3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8
Phosphate, mg/dl	4,4	4,4	4,3	4,3	4,3	4,2	4,2	4,3	4,3	4,2	4,3	4,4	4,3

CONCLUSIONS

Mixed HDF as maintenance therapy of a cohort of 334 chronic dialysis patients was able to steadily maintain high removal of uremic toxins of different molecular weight and, actually, a remarkable patients survival rate. This technique prevents the drawbacks of post-HDF (haemoconcentration) and may be easily applied also in patients with difficult operational conditions as a reduced blood flow rate. The high convective volume achievable with Mixed HDF(~40 Liter/session, of which ~23 Liter/session infused in post-dilution) probably contributed to these results, to be confirmed by controlled trials due to the acknowledged limits of the present study, first of all the possible bias of patients selection.

FRESENIUS MEDICAL CARE

References

Maduell F, et al., for the ESHOL Study Group. High-Efficiency Postdilution Online Hemodiafiltration Reduces All-Cause Mortality in Hemodialysis Patients. J Am Soc Nephrol 24. doi: 10.1681/ASN. 2013.
Ok E, et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant 28: 192–202, 2013.
Grooteman MPC et al., for the CONTRAST Investigators. Effect of Online Hemodiafiltration on All-Cause Mortality and Cardiovascular Outcomes. J Am Soc Nephrol 23: 1087–1096, 2012.
Pedrini LA, De Cristofaro V. On-line mixed HDF with a feedback for ultrafiltration control: effect on middle-molecule removal. *Kidney Int* 64:1505-1513, 2003.
Pedrini LA, et al. Trans-membrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. *Kidney Int* 69:573-579, 2006.
Pedrini LA. Et al. Long-term effects of high-efficiency on-line haemodiafiltration on uraemic toxicity. A multicentre prospective randomized study. Nephrol *Dial Transplant* 2011, 26:2617-2624.
Pedrini LA, Wiesen, G. Overcoming the limitations of post-dilution on-line hemodiafiltration: mixed dilution hemodiafiltration. Contrib. Nephrol. 175:129-140, 2011

