THE EFFICACY OF TREATMENT WITH GLUCAGON-LIKE PEPTIDE-1 **RECEPTOR AGONISTS IN CHRONIC DIALYSIS PATIENTS WITH DIABETES MELLITUS** Takeda K^{1),2)}, Toyonaga J²⁾:1) Dept. of Nephrology and Kidney Centre, Aso-lizuka Hospital, lizuka City, Japan

2) Dept. of Internal Medicine, division of Nephrology, lizuka Memorial Hospital, lizuka City, Japan

Introduction

• Many patients on renal replacement therapy suffer from diabetes mellitus (DM). But most oral antidiabetic agents have limitations in patients (pts) with CKD.

• Elderly patients with DM and CKD are at particular risk of **hypoglycemia.** ¹⁾Incretin-based therapies , glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, possess a potent antihyperglicemic effect with a low risk of hypoglycemia.

• GLP-1 is an incretin hormone secreted by L cell in the intestine in response to food intake. GLP-1 binds to its receptor on pancreatic β cells leading to glucose-dependent insulin secretion and thereby improvement of glycemic control.

• In addition to blood glucose reduction in Type 2 diabetes, liraglutide have been associated with weight loss, improved β -cell function

Result

Table1. Baseline and 2 years demographics and clinical characteristics of PD patients GLP-1RA:mean period of use:2.5±0.2 years

	Baseline	2 years	p value
Albmin (g/dl)	2.9 ± 0.1	3.2±0.5	0.26
Hemoglobin (g/dl)	10.8 ± 0.8	11.7 ± 1.0	0.14
HbA1c (%)	7.0±0.8	6.0 ± 0.4	0.048*
Glycoalbmin (%)	19.6±3.4	15.4 ± 1.7	0.047*
Body fat falling rate (%)*	0.0 ± 0.0	-13.7±10.8	<0.001**
Skeletal muscle mass (kg)*	22.9±1.4	23.1±1.9	0.9
Extra-cellular water ratio*	0.399 ± 0.01	0.403 ± 0.01	0.18
Body weight falling rate (kg)*	0.0 ± 0.0	-6.8±2.5	0.004**
Left ventricular mass index**	114.8 ± 10.9	113.2 ± 15.9	0.86
Systolic blood pressure (mmHg)	150.6 ± 10.5	129.8±12.5	0.022*
Diastolic blood pressure (mmHg)	67.0±11.7	65.8±7.4	0.85

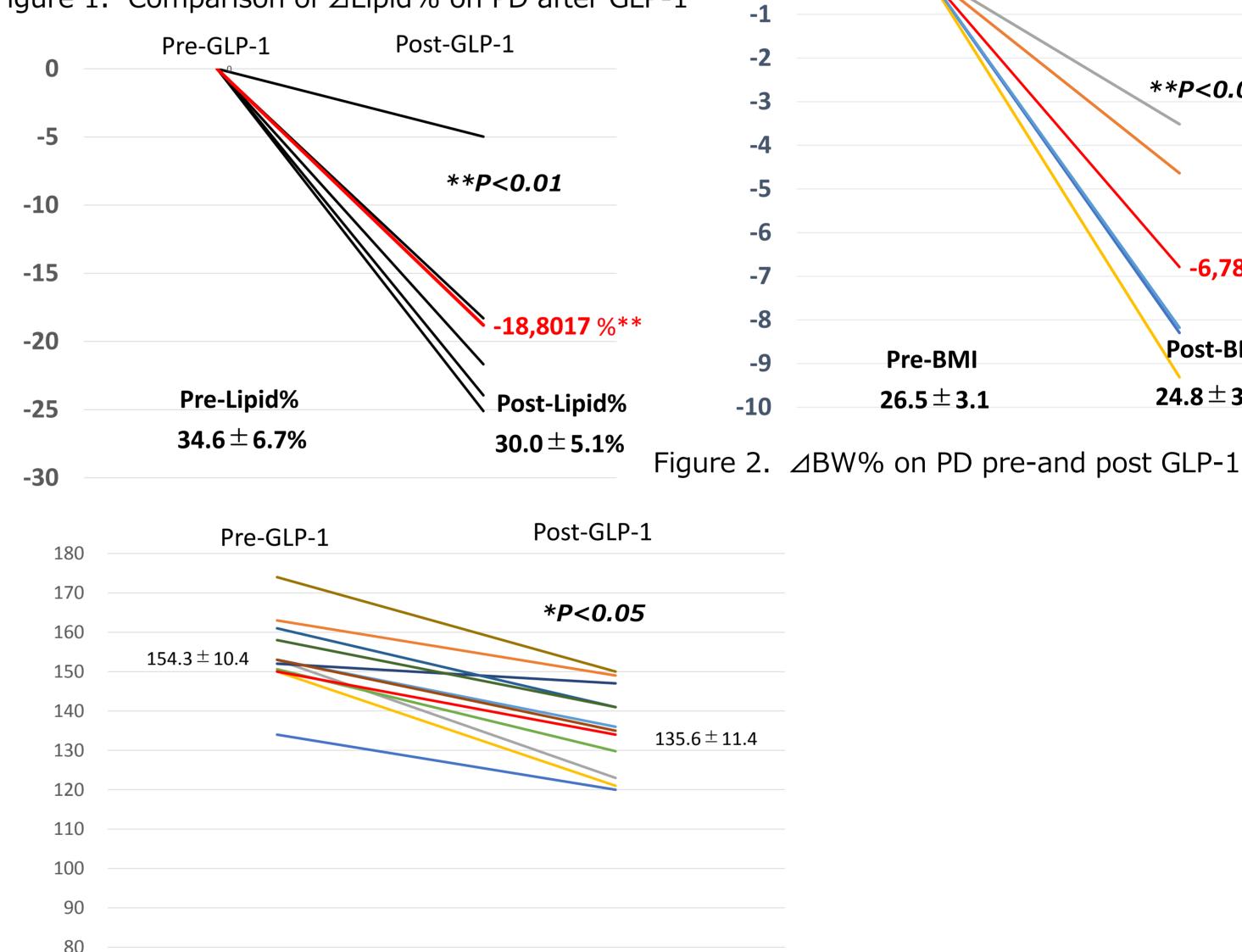
and a reduction in office systolic blood pressure.²⁾

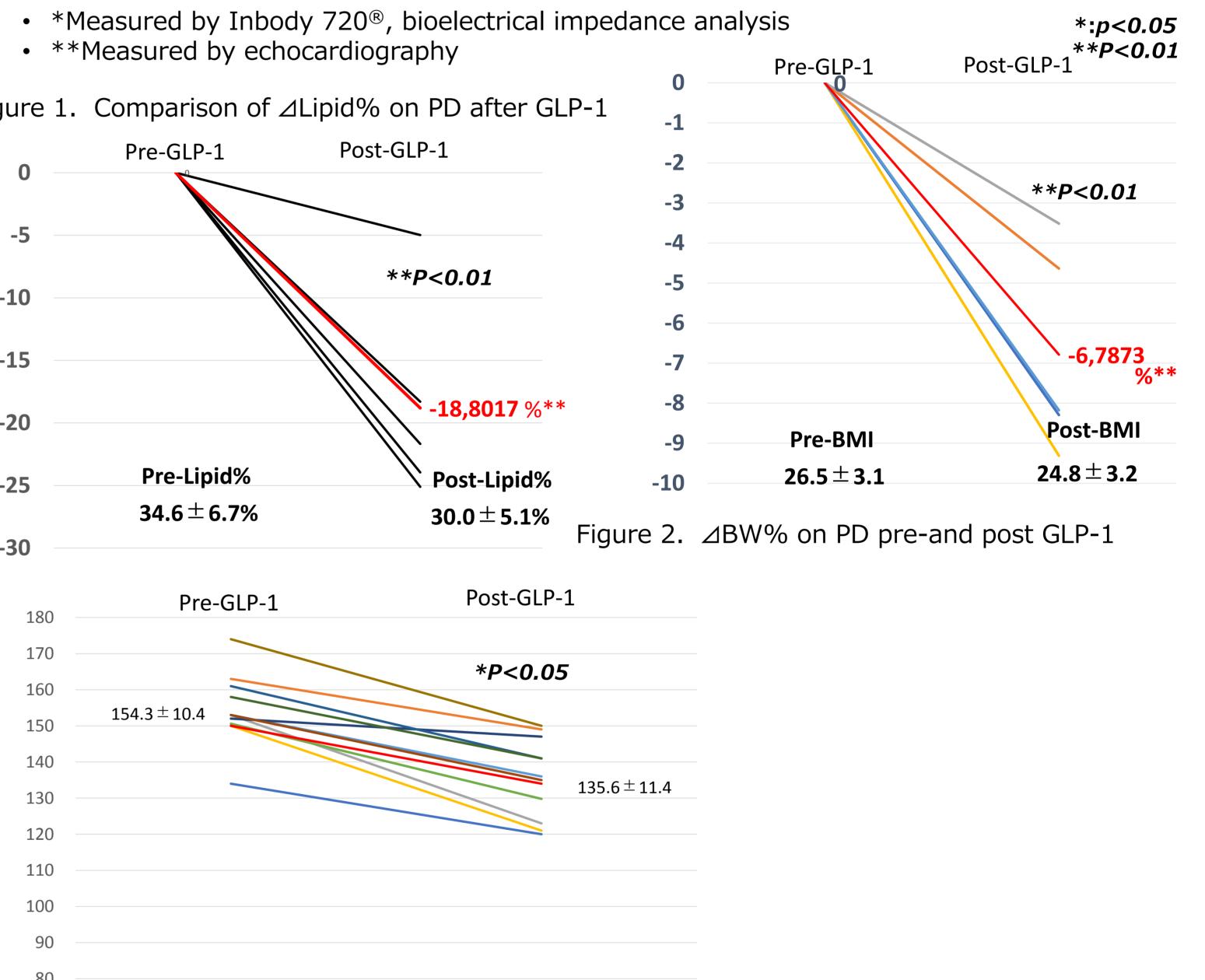
 Pronounced weight gain frequently complicates insulin therapy in pts with DM. Furthermore the fluid of Peritoneal Dialysis (PD)

contains high concentrated glucose to ensure hyper-osmolarity, and glucose is absorbed. So insulin-treated pts on PD probably tend to gain weight.

 Recently the efficacy of DPP-4 inhibitors is reported in CKD patients. $^{3)4)}$ And its report is progressively increasing. However the efficacy of GLP-1 receptor agonists (RA) is uncertain. There are few reports in DM pts with CKD, in a particular CAPD or Hemodialysis (HD) pts. **In** this study, we investigated the efficacy of GLP-1 RA in chronic dialysis pts (ESRD) with DM.

Method


Study design and patient population


• This was a single-center with one satellite hospital, open-label study. • There were 5 PD pts (3 males and 2 females, age; 71.4 \pm 6.3 years, duration of dialysis ; 4.6 \pm 1.9 years) on PD: 5 HD pts (3 males and 2 Figure 1. females, age ; 64.4 \pm 12 years, duration of dialysis ; 9.3 \pm 6.0 years) on HD. We selected 10 chronic dialysis pts, who receive 2 years on PD, over 1 year on HD, of daily treatment with liraglutide (0.6 mg or 0.9) mg/day) and lixisenatide ($10-20\mu g/day$).

• We compared with the clinical parameters (physiological, chemical, etc.) basement and after 2 years or 1 year.

Table2. Baseline and 1 year demographics and clinical characteristics of HD patients GLP-1RA:mean period of use:1.7±0.5 years

	Baseline	1 year	p value
Albmin (g/dl)	3.8±0.4	3.9±0.4	0.58
Hemoglobin (g/dl)	10.6 ± 1.1	11.5 ± 0.8	0.26
HbA1c (%)	6.6±0.6	6.1±1.0	0.4
Glycoalbmin (%)	24.4±2.8	23.1±2.9	0.5
Body fat falling rate (%)*	0.0 ± 0.0	-33.6±32.9	0.02*
Skeletal muscle mass (kg)*	27.0±8.6	26.2±9.0	0.9
Extra-cellular water ratio*	0.403 ± 0.01	0.400 ± 0.01	0.6
Body weight failing rate (%)*	0.0 ± 0.0	-6.86±5.6	0.05*
Left ventricular mass index**	126.2 ± 31.9	115.2 ± 21.0	0.6
Systolic blood pressure (mmHg)	158.0 ± 9.9	141.4±7.1	0.018*
Diastolic blood pressure (mmHg)	80.2±11.8	77.6±9.8	0.7

The specific patient eligibility criteria are listed below.

Inclusion criteria:
Male and female patients with type 2 diabetes and ESRD treated with a stable dose of 0.6 mg or 0.9 mg liraglutide, 10 or $20\mu g$, lixisenatide for at least 6 months. HD:5hours/time, 3 time/week. The BP was measured at hospital coming day in PD and before HD session at the next day of 2 days free in HD pts. ► Patients were excluded if they had type 1 diabetes, and under 20 ys; had been treated with another incretin mimetic within 3 months prior to screening.

Statistical analysis

- Data was expressed as mean \pm SD. JMP version 12.1.0 (SAS) Institute, Cary, NC, USA) was used for all statistical analyses.
- The Student t-test was used to assess differences in numerical variables from baseline to 1 or 2 years.
- A P value less than 0.05 was considered statistically significant.

Discusion

•The mechanism by which GLP-1 RA reduces BP is unclear, but it might be through increased natriuresis, vasodilation from GLP-1 receptor activation, insulin subsides and suppressed the effect of angiotensin- II^{5} , 8).

•In obese ESRD-DM pts, appetite loss due to direct thalamus stimulation by GLP-1RA leads BW (lipid) reduction, which might make BP control directly improved $^{9)}$.

•The same as some reports $^{6),7)}$, the treatment of GLP-1 RA (liraglutide or lixisenatide) may be safe and effective not only in HD, but in PD pts.

Figure 3. BP (mmHg) on ESRD-DM for pre-and post GLP-1

Arteriosclerotic marker (baPWV, ABI, CAVI); not significant between pre- and post-GLP-1

Conlusions

- SBP, BW, and body fat were significantly improved after treatment. Only in PD, HbA1c, glycoalbumin were significantly improved in PD, however not significantly in HD.
- •The data of ECW/TBW, LVMI, and arteriosclerotic marker; PWV, and ABI were not significant.

Refference

1) Selter HS . Endocrinol Metab Clin North Am 1989; 18: 163-183 2) von Scholten BJ et al. Diabet Med 2015; 32: 343-352 3) Marc E et al. Diabetes Ther 2015; 6: 1-5 4) Marc E et al. Am J Kidney Dis 2015; 66: 441-449 5) Hirata K et al. Biochem Biophys Res Commun 2004; 380: 44-49 6) Idorn T et al. Diabetes Care 2016; 39: 206-213 7) Hiramatsu T et al. Ther Apher Dial 2015; 19: 598-605 8) Tanaka T et al. Kidney Int. 2014;86:701-711 9) Kotosis V et al. Hypertension Research 2010;33:386-393

- A few patients had slight anorexia, but it was very mild. None experienced hypoglycemia and other adverse events.
- We could show that the treatment of liraglutide or lixisenatide may be efficacy and safety in chronic dialysis patients.
- •The GLP-1RA therapy may be very useful to improve BP control and body fat without muscle loss in ESRD-DM.
- Our study has several limitations. There was not the control group. The study population was very small. And the reseach period was short. So we require large-scale study with longer follow-up.

•com