
N° SP397

Clinical Research

ERA- EDTA annual meeting- Madrid, 2017 AGE content of a protein load is responsible for renal hyperfiltration

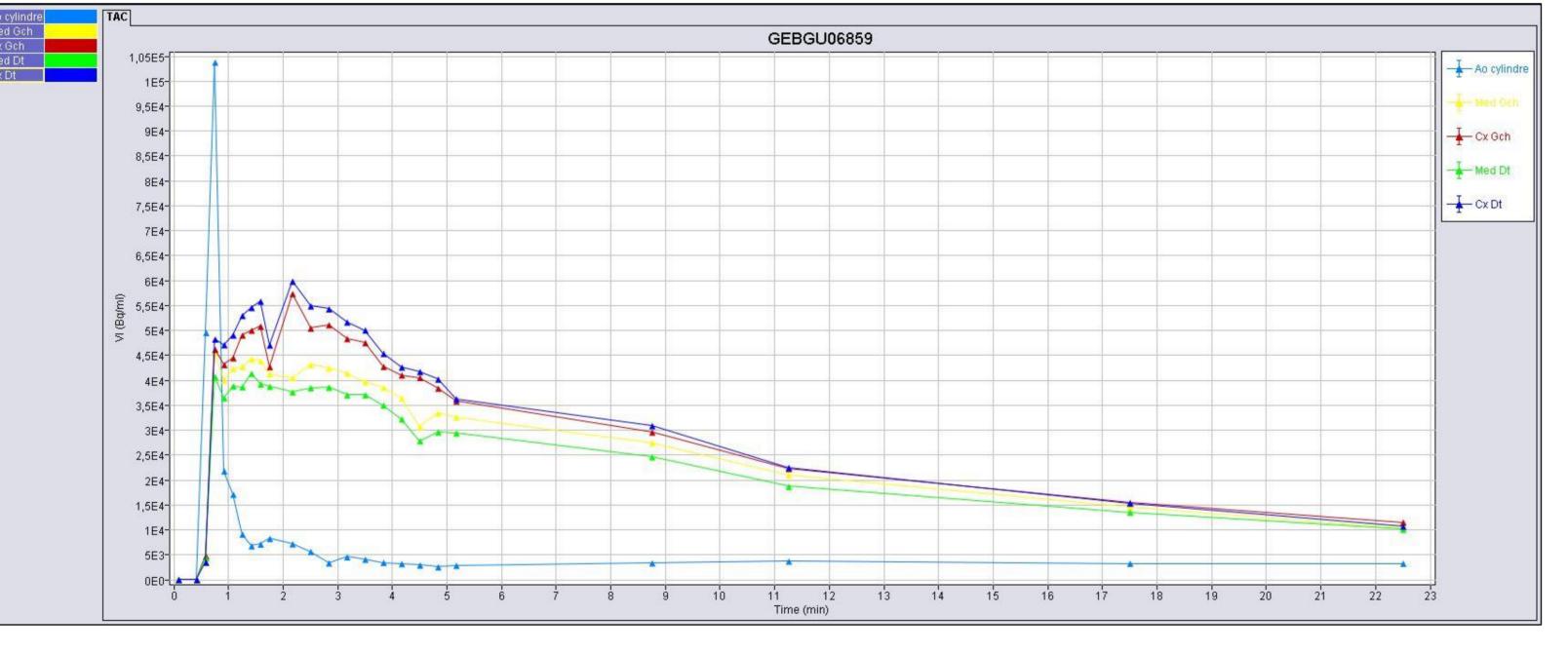
Gabrielle NORMAND ^(1,2,3), Sandrine LEMOINE, MD, PhD ^(1,2,3,4), Marjorie VILLIEN, PhD ⁽³⁾, Didier LEBARS, PharmD, PhD ^(3,4), Ines MERIDA ⁽³⁾, Zacharie Irace, PhD ⁽³⁾, Nicolas COSTES, PhD ⁽³⁾, and Laurent JUILLARD, MD, PhD ^(1,2,3,4).

(1) Department of Nephrology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France (2) CarMeN: Cardiovasculaire,
Métabolisme, Diabétologie & Nutrition- INSERM U1060 / Univ.Lyon1/ INRA 1235 (3) CERMEP, MR/ PET Center, Lyon, France (4)
Université Claude Bernard Lyon 1, Lyon, France

Introduction/ Objectives

Low-protein diet is recommended to slow down chronic kidney disease progression ^{1,2,3} because each protein load leads to a detrimental glomerular hyperfiltration ^{4,5,6,7}. All protein preparations used to demonstrate protein-mediated renal hemodynamic effects were rich in Advanced Glycation End Products (AGE) ^{8,9}. The aim of our study was to evaluate if the AGE content of a protein load is responsible for the protein-induced renal hyperfiltration.

Material and Methods


Ten healthy subjects were assigned to a high-protein (1g/kg) low-AGE (3.000 kU AGE) versus high-AGE (30.000 kU AGE) meal, during imaging sessions performed on two different days. Renal perfusion assessed by PET using [¹⁵O] H₂O, renal oxidative metabolism measured by PET using [¹¹C] labeled acetate, and oxygen content using BOLD-MRI, were measured before and 120- minutes after each meal (Figure 1).

Results

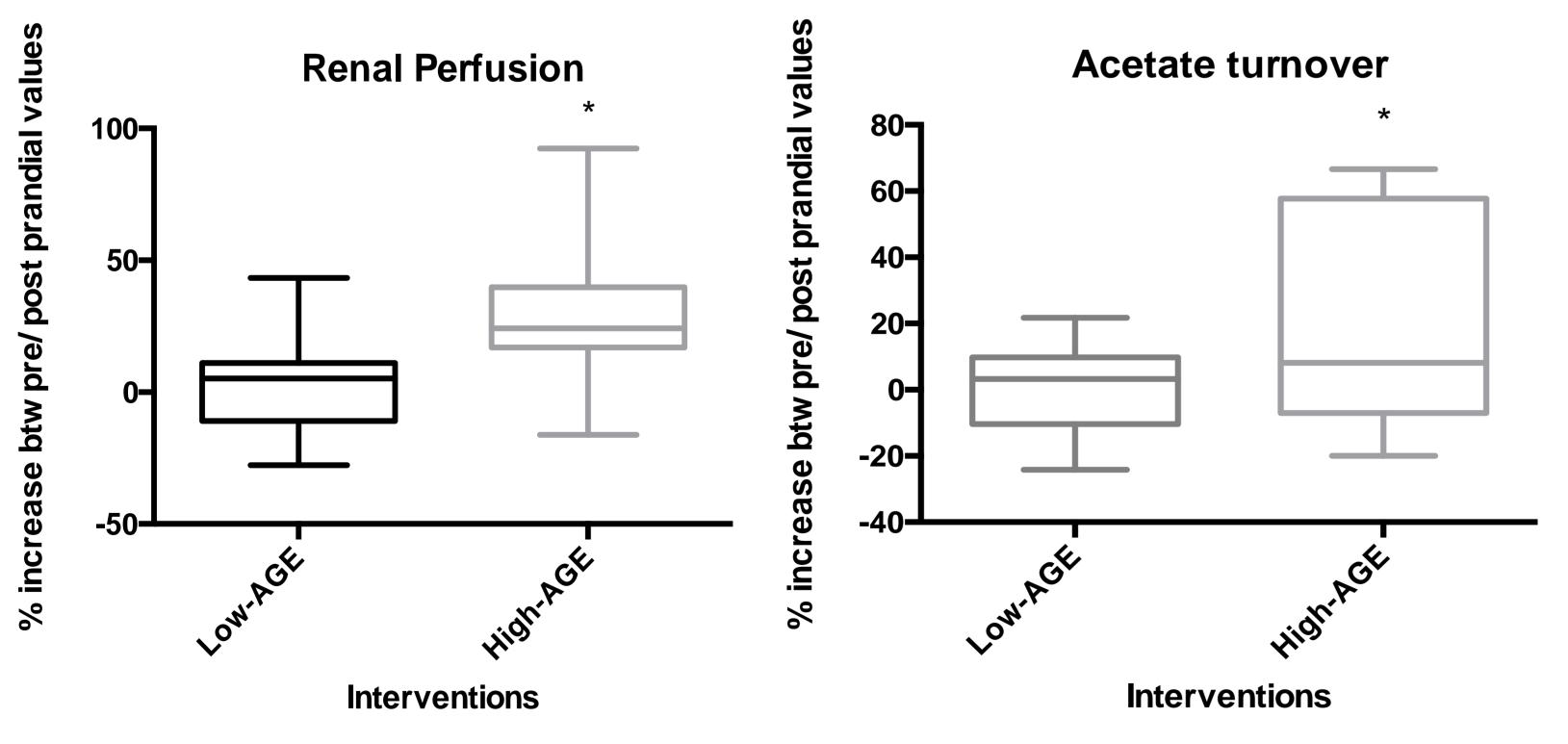

Renal perfusion increased significantly (from 3.16 ± 0.55 to 3.80 ± 0.42 mL/min/g (p=0.0002)) after the high-AGE meal whereas it was not modified after the low-AGE meal (from 3.35 ± 0.65 to 3.38 ± 0.53 ml/min/g, p=0.88) (Figure 2). Oxidative metabolism increased significantly after the high-AGE meal (0.3 ± 0.04 vs 0.36 ± 0.08 min⁻¹, p=0.005) compared to the low-AGE meal (0.30 ± 0.02 vs 0.31 ± 0.06 min⁻¹, p=0.76) for both cortices (Figure 2). We did not find any difference in oxygen content between the two diets (Table 1).

Figure 1: Generation of Time Activity Curves (TAC) from PET MRI data analysis

	Low-AGE (n = 9)		High-AGE (n = 10)	
Acquisitions	Baseline	Post prandial	Baseline	Post prandial
¹⁵ O-water PET (ml/g/min)-	3.35 ± 0.65	3.38 ± 0.53	3.16 ± 0.55	3.8 ± 0.42 *
¹¹ C- acetate PET (min ⁻¹)-	0.30 ± 0.02	0.31 ± 0.06	0.30 ± 0.04	0.36 ± 0.08 *
BOLD-MRI (Cortical R2*)	18.3 ± 1.3	20.4 ± 2.7 *	17.9 ± 1.2	20.1 ± 3.3
BOLD-MRI (medullary R2*)	27.6 ± 3.2	$\textbf{32.2} \pm \textbf{4.1*}$	27.1 ± 4.9	32.4 ± 5.7 *

Table 1: Renal functional parameters. * means $p \le 0.05$

References

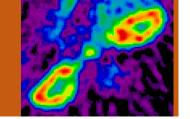
- 1. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996 Apr 1;124(7):627–32.
- 2. Klahr S. The modification of diet in renal disease study. N Engl J Med. 1989 Mar 30;320(13):864–6.
- 3. CKD EVALUATION & MANAGEMENT | KDIGO [Internet]. [cited 2016 May 9]. Available from: http://kdigo.org/home/guidelines/ckd-evaluation-management/
- 4. Laville M, Hadj-Aissa A, Pozet N, Le Bras JH, Labeeuw M, Zech P. Restrictions on use of creatinine clearance for measurement of renal functional reserve. Nephron. 1989;51(2):233–6.
- 5. Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S. Renal functional reserve in humans. Effect

Figure 2: Relative changes induced by either a low-AGE or a high-AGE meal between baseline and post-prandial values. * means $p \le 0.05$

of protein intake on glomerular filtration rate. Am J Med. 1983 Dec;75(6):943–50.

Hostetter TH. Human renal response to meat meal. Am J Physiol - Ren Physiol. 1986 Apr 1;250(4):F613–8.
Mansy H, Patel D, Tapson JS, Fernandez J, Tapster S, Torrance AD, et al. Four methods to recruit renal functional reserve. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 1987;2(4):228–32.
Uribarri J, Tuttle KR. Advanced glycation end products and nephrotoxicity of high-protein diets. Clin J Am Soc Nephrol CJASN. 2006 Nov;1(6):1293–9.

9. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911–916.e12.


Conclusion

Our results demonstrate that this is not the high protein content of a meal that increases renal perfusion and oxidative metabolism but its high-AGE content. Therefore, this study suggests that prevention of CKD progression should aim predominantly at reducing food AGE content.

Trial registration: ClinicalTrials.gov NCT02695251

•com

