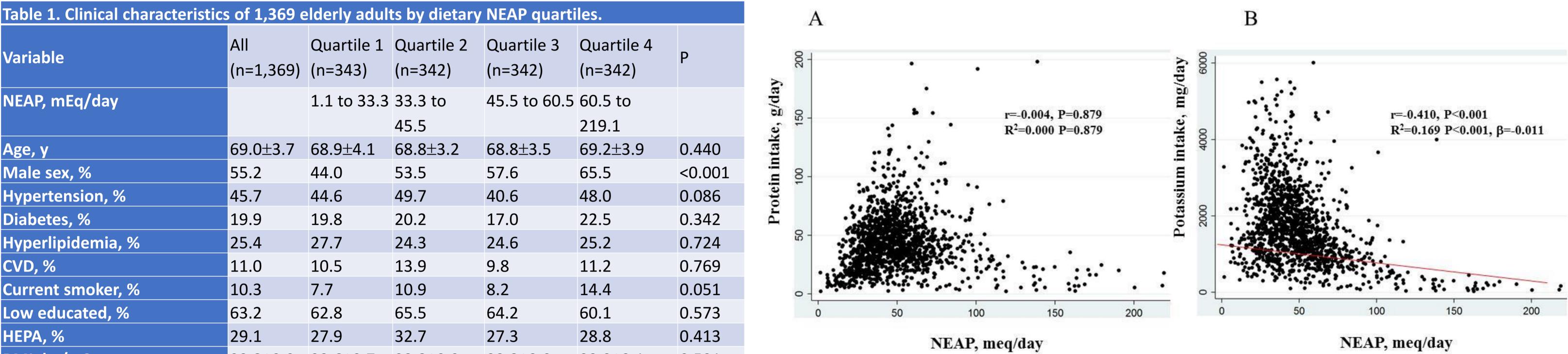
DIETARY NET ENDOGENOUS ACID PRODUCTION AND CHRONIC KIDNEY DISEASE IN ELDERLY ADULTS

Kyu-Beck Lee, Young Youl Hyun, and Hang Kim

Division of Nephrology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea,

Background

Dietary net endogenous acid production (NEAP), which represents total dietary load of nonvolatile acid, may affect kidney function. A few studies are available assessing the association between NEAP and chronic kidney disease (CKD), and its relation to dietary protein and potassium intake in the elderly.


Methods

A total 1369 community-dwelling elderly Koreans in the Kangbuk Samsung Cohort Study (KSCS) were evaluated using a food frequency questionnaire (FFQ) and comprehensive health examination. We evaluated the association between NEAP and the CKD. We also examined their relation to protein and potassium intake.

	Odds ratio (95% confidence interval)					
	Quartile 1				P for trend	
NEAP quartile						
increase						
Crude	1.00 (reference)	1.02 (0.68-1.56)	0.85 (0.55-1.30)	1.47 (1.00-2.19)	0.102	
Model 1	1.00 (reference)	1.07 (0.69-1.66)	0.88 (0.55-1.42)	1.45 (0.90-2.34)	0.189	
Model 2	1.00 (reference)	1.47 (0.78-2.76)	1.66 (0.85-3.23)	2.30 (1.16-4.60)	0.019	
Protein intake						
quartile increase						
Crude	1.00 (reference)	0.64 (0.42-0.96)	0.85 (0.58-1.26)	0.64 (0.42-0.97)	0.104	
Model 1	1.00 (reference)	0.61 (0.38-1.01)	0.77 (0.45-1.34)	0.55 (0.27-1.16)	0.260	
Model 2	1.00 (reference)	0.53 (0.27-1.02)	0.68 (0.32-1.46)	0.56 (0.21-1.47)	0.444	
Potassium intake						
quartile increase						
Crude	1.00 (reference)	0.69 (0.46-1.03)	0.73 (0.49-1.08)	0.64 (0.43-0.97)	0.046	
Model 1	1.00 (reference)	0.68 (0.44-1.05)	0.71 (0.44-1.17)	0.65 (0.34-1.22)	0.196	
Model 2	1.00 (reference)	0.52 (0.28-0.95)	0.50 (0.26-0.96)	0.50 (0.21-0.99)	0.050	
Model 1: Adjusted for age, sex, total caloric intake, dietary sodium intake; Model 2: model 1+						
body mass index, smoking, education state, health-enhancing physical activity; hypertension,						
diabetes, hyperlipidemia, cardiovascular disease.						
CKD, chronic kidney disease; NEAP, net endogenous acid production.						

Results

NEAP was correlated with potassium intake (r=-0.410, P < 0.001), but not correlated with protein intake (r=-0.004, P = 0.879) (Fig 1). In a full multivariate adjustment for sociodemographic factors, dietary factors, and comorbidities, the participants with higher NEAP quartiles (Q2, Q3, Q4) had higher odds of CKD compared to the lowest NEAP quartile (Q1); OR (95% CI) were 1.47 (0.78-2.72), 1.66 (0.85-3.23), and 2.30 (1.16-4.60) respectively (P for trend =0 .019) (Table 3). The odds of CKD decreased for participants with higher potassium intake quartiles (Q2, Q3, Q4) compared to the lowest potassium intake quartile (Q1); OR (95% CI) were 0.52 (0.28-0.95), 0.50 (0.26-0.96), and 0.50 (0.21-0.99) respectively (P for trend =0.050) (Table 3). Protein intake was not associated with CKD. The association between NEAP and CKD was similar in subgroups analysis (Fig 2).

Current smoker, %	10.3	7.7	10.9	8.2	14.4	0.051
Low educated, %	63.2	62.8	65.5	64.2	60.1	0.573
HEPA, %	29.1	27.9	32.7	27.3	28.8	0.413
BMI, kg/m2	23.8±2.9	23.6±2.7	23.8±2.9	23.8±3.0	23.9±3.1	0.591
Systolic BP, mmHg	119±14	120±15	119±14	119±15	119±14	0.826
Diastolic BP, mmHg	72±9	72±9	72±9	72±9	72±9	0.809
CRP, mg/L	0.6	0.5	0.6	0.6	0.6	0.739
	[0.2 1.0]	[0.2 1.0]	[0.2 1.0]	[0.2 1.1]	[0.2 1.1]	
Total cholesterol, mg/dL	195±38	196±39	196±38	198±37	191±39	0.118
Triglyceride, mg/dL	114±58	111±52	116±57	111±57	116±64	0.495
Fasting glucose, mg/dL	103±19	104±19	104±21	102±20	103±17	0.578
eGFR, mL/min/1.73m2	79.4±13.0	79.3±13.5	80.5±12.0	80.0±12.2	77.7±13.9	0.028
eGFR < 60 mL/min/1.73m2, %	7.0	6.1	5.8	6.4	9.7	0.175
Urinary ACR, mg/g	7.6	7.8	8.5	6.9	7.4	0.271
	[4.4 15.0]	[4.3 15.8]	[4.7 15.1]	[4.2 13.9]	[4.1 15.4]	
Urinary ACR \geq 30 mg/g, %	11.1	11.1	10.8	8.5	14.0	0.115
CKD, %	15.9	14.9	15.2	12.9	20.5	0.044

Values for categorical variables are given as percent; for continuous variables, as mean \pm standard deviation; for CRP and urinary ACR, as median [interquartile range].

NEAP, net endogenous acid production; CVD, cardiovascular disease; HEPA, health-enhancing physical activity; BMI, body mass index, BP, blood pressure, CRP, C-reactive protein, eGFR, estimated glomerular filtration rate; ACR, albumin creatinine ratio; CKD, chronic kidney disease.

Fig 1. Correlations between net endogenous acid production (NEAP) and nutrient intakes. (A) protein intake, and (B) potassium intake. The straight-line represents the best-fit lines obtained by linear regression analysis.

Subgroup	Number of Participants (%)	P interaction
Overall	1369	I
Sex		0.095
Male	755 (55.1)	i
Female	614 (44.9)	
Body mass index (BMI)		0.035
BMI < 25 kg/m ² /1.73m ²	930 (67.9)	· · · · · · · · · · · · · · · · · · ·
BMI ≥ 25 kg/m ² /1.73m ²	439 (32.1)	
Diabetes		<0.001
No	1097 (80.1)	· · · · · · · · · · · · · · · · · · ·
Yes	272 (19.9)	
Hypertension		0.007
No	743 (54.3)	•
Yes	626 (45.7)	
Hyperlipidemia		0.373
No	1021 (74.6)	·
Yes	348 (25.4)	•
Cardiovascular disease		0.027
No	1218 (890)	· · · · · · · · · · · · · · · · · · ·
Yes	151 (11.0)	

Table 2. Dietary characteristics by dietary NEAP quartiles.

392--SP

Dietary parameter	All (n=1,369)	Quartile 1 (n=343)	Quartile 2 (n=342)	Quartile 3 (n=342)	Quartile 4 (n=342)	P for trend	
NEAP, mEq	50.4±26.5	25.5±7.0	39.9±3.5	52.2±4.0	84.1±29.3	<0.001	
Protein intake, g/day	44.4±25.3	35.3±19.3	48.6±23.4	49.7±22.5	44.0±31.8	<0.001	
Protein intake, g/Kg/day	0.73±0.45	0.60±0.34	0.80±0.41	0.81±0.37	0.72±0.60	0.001	
Potassium intake, mg/day	1733±990	2067±1048	2059±973	1700±776	1105±814	<0.001	
Protein:Potassium ratio	1112±486	656±128	919±65	1145±74	1731±538	<0.001	
Sodium intake, mg/day	1956±1420	2353±1608	2395±1442	1910±1101	1165±1107	<0.001	
Calorie intake, Cal/day	1283±678	954±619	1378±642	1464±632	1335±701	<0.001	
NEAP, net endogenous acid production							

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Odds Ratio (95% Confidence Intervals)

Fig 2. Forest plot of dietary net endogenous acid production (NEAP) and chronic kidney disease in overall participants and subgroups. Odds ratios (95% confidence intervals) were per quartile of NEAP. Odds ratios were adjusted for age, sex, total caloric intake, dietary sodium intake, body mass index, smoking, education state, health-enhancing physical activity, hypertension, diabetes, hyperlipidemia, and cardiovascular disease (Model 2).

Conclusion

Dietary acid load was associated with CKD. Among the nutrients related to dietary acid load, potassium intake was negatively associated with CKD, but protein intake was not associated with CKD in elderly adults.

