Vitamin D in overweight chronic kidney disease patients

Athanasios Kitsos^a, Stelios Tigas^b, Evangelia Ntounousi^a, Rigas Kalaitzidis^a, Anna Challa^c, Kostas C. Siamopoulos^a ^a Department of Nephrology, University of Ioannina, Greece.

^b Department of Endocrinology, University of Ioannina, Greece.

^c Pediatric Research Laboratory, Child Health Department, University of Ioannina, Greece

Introduction:

Obesity is a strong risk factor for incident chronic kidney disease (CKD). Furthermore, high body mass index (BMI) is consistently associated with low serum vitamin D in the general population. The aims of the present study were to i) compare vitamin D metabolite levels in overweight/obese versus normal weight individuals with normal to severely impaired renal function and ii) to assess the impact of 25(OH)D on the development of secondary hyperparathyroidism (SHPT).

Figure 3: PTH levels in overweight vs normal weight subjects

Methods:

25(OH)D, 1,25(OH)₂D, PTH, calcium (Ca) and phosphate (P) were measured in 104 CKD outpatients with BMI>25kg/m². Participants were categorized according to the eGFR (mL/min/1.73m²) in three categories:

1. G1 ≥60 ml/min/1.73 m² (n=53),

2. G2: 30-59 ml/min/1.73 m² (n=35) and

3. G3: 15-29 ml/min/1.73 m² (n=16).

A control group of fifty normal-weight outpatients with comparable eGFR levels was included (G1-nw – G3-nw).

Results:

25(OH)D was lower in overweight/obese (G1-G3) subjects (19.9±6.4 vs 24.9±6.3 ng/ml, p<0.01) compared to normal individuals. This difference was observed in G1 patients compared to G1-nw (21.7 ±6.5 vs 26.5±7.0 ng/ml, p=0.02) and in G2 patients versus G2-nw (19.0±6.0 vs 25.0±5.2 ng/ml, p<0.01), whereas the level did not differ among G3 groups (15.8±4.7 ng/ml vs 20.3±4.5 ng/ml, p=0.49 in G3 vs G3-nw respectively) (figure 1).

Mean 1,25(OH)₂D and PTH levels were similar in obese/overweight versus normal-weight individuals in each eGFR category (figure 2, figure 3 and

Multivariate regression analysis in the entire cohort revealed that factors independently associated with low 25(OH)D levels were:

- 1. BMI>25kg/m^{2,}
- 2. eGFR<30 ml/min/1.73m² and
- 3. female gender.

Factors independently associated with low 1,25(OH), D levels were:

1. eGFR<30 ml/min/1.73m²

- 2. older age and
- 3. increased serum phosphate.

Even though mean 25(OH)D was suboptimal (<30ng/ml) in all eGFR groups, SHPT begun to occur in eGFR levels<60 ml/min/1.73m².

Almost half of the participants with CKD stage 3 (16 out of 35) had PTH levels above the upper limit of the normal lab reference range and most of them (14/16 or 87,5%) had eGFR <45ml/min/1.73m². Significant hyperparathyroidism, in terms of PTH levels higher than those recommended by current clinical guidelines, were only observed in G3.

Figure 1: 25(OH)D levels in overweight vs normal weight subjects

Figure 2: 1,25(OH)₂D levels in overweight vs normal weight subjects

Table 1: Bone metabolism markers by eGFR levels in overweight and normal weight subjects

Variables	eGFR ml/min/1.73m ²	overweight	controls	р
250HD ng/ml	>60	21.7 ±6.5	26.5 ±7.0	0.02
	30-59	19.0 ±6.0	25.1 ±5.2	<0.01
	15-29	15.8 ±4.7	20.3 ±4.8	0.49
	total	19.9 ±6.4	24.9 ±6.3	<0.01
1.25 OH2D pg/ml	>60	57.0 ±18.5	60.4 ±20.9	0.63
	30-59	44.4 ±15.7	45.1 ±13.6	0.84
	15-29	33.3 ±12.4	34.5 ±10.0	0.80
	total	49.1 ±18.8	50.2 ±19.5	0.98
PTH pg/ml	>60	60,7 ±26.1	55,2 ±22.4	0.27
	30-59	81,1 ±45.9	73,8 ±34.7	0.68
	15-29	217,2 ±141.9	210,22 ±66.2	0.57
	total	91.6 ±83.4	89.8 ±68.4	0.76

* p refers to post-hoc test significance in anova analysis

Conclusions:

Lower serum 25(OH)D but similar 1,25(OH)₂D and PTH levels were observed in overweight/obese compared to normal weight individuals and preserved or moderately impaired renal function.

Even though vitamin D insufficiency was a common feature across all eGFR categories, SHPT was only observed in those with severely impaired renal function.

