





# Effects of vitamin D supplementation on markers of bone and mineral metabolism in pediatric patients with early and late CKD

D. Haffner<sup>1</sup>, C. Lerch<sup>1</sup>, F. Schaefer<sup>2</sup> and R. Shroff<sup>3</sup> on behalf of the 4C consortium and the ESPN CKD-MBD study group\* <sup>1</sup>Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, GERMANY <sup>2</sup>Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, GERMANY <sup>3</sup>Renal Unit, Great Ormond Street Hospital for Children, London, UNITED KINGDOM

## **Objectives**

**Effects of vitamin D supplementation on bone biomarker** 

The effects of vitamin D supplementation on CKD-MBD (besides on iPTH levels) are large *Vitamin D suppl.* did not affect S-Ca, phosphate, iPTH & HCO3<sup>-</sup> levels (not show unknown. We investigated the effects of vit. D suppl. on biomarkers of CKD-MBD in two FGF23 levels were further increased in 4C, but not in ERGO pts. (Fig. 2). Klother patient cohorts with early and late CKD derived from a randomized trial on ergocalciferol<sub>sclerostin</sub> levels were normalized in ERGO pts. and remained unchanged in 4C suppl. (ERGO-trial, Shroff et al., CJASN 2012) and the 4C study cohort.

# Methods

80 vitamin D-deficient (25(OH)D ≤75 nmol/L) pts. with CKD 2-4 started on vit. D suppl. or

not were enrolled from the ERGO-trial (40 pts. randomized either to ergocalciferol suppl. or placebo) and the 4C cohort (20 pts. started on cholecalciferol, 20 controls matched by age,

sex, eGFR, and serum calcium).

Serum levels of Klotho, intact/c-terminal-FGF23, and sclerostin were assessed at baseline

**Results** a median period of 6 mo. (range 4-12) using age- and sex-related standard deviation scores (SDS) Patient characteristics (Table 1)

4C patients presented with more advanced CKD, and consequently more pronounced biochemical abnormalities compared to ERGO patients.

| Table 1     | ERGO        | 4C           | р      |
|-------------|-------------|--------------|--------|
| n           | 40          | 40           |        |
| Age (years) | 9.13 (5.12) | 12.66 (3.29) | <0.001 |

**Fig. 2:** Markers of bone metabolism at baseline (white) and at the end of observation (grey) . \* p<0.05 vs. healthy children; \*\*p<0.05 vs. baseline values.



| Male (%)                                                         | 62.5                     | 62.5                       | 1.000   |
|------------------------------------------------------------------|--------------------------|----------------------------|---------|
| Height SDS                                                       | -0.81 (1.75)             | -1.66 (1.14)               | 0.012   |
| eGFR (ml/min * 1.73 m²)                                          | 54.8 (14.4)              | 24.3 (8.0)                 | <0.001  |
| CKD (%)<br>2<br>3<br>4<br>5                                      | 39.5<br>52.6<br>7.9<br>0 | 2.6<br>12.8<br>82.1<br>2.6 | <0.001  |
| CAKUT (%)                                                        | 92.5                     | 65                         | 0.006   |
| Serum calcium (mmol/L)                                           | 2.42 (0.12)              | 2.32 (0.22)                | 0.016   |
| Serum phosphate (mmol/L)                                         | 1.47 (0.22)              | 1.60 (0.31)                | 0.031   |
| iPTH (pmol/L)                                                    | 4.10 [2.50, 5.62]        | 15.05 [8.58, 44.04]        | < 0.001 |
| Ca-based phosphate binders (%)                                   | 12.5                     | 35                         | 0.036   |
| Ca-free phosphate binders (%)                                    | 0                        | 2.5                        | 1.000   |
| Serum bicarbonate (mmol/l)                                       | 23.8 (2.2)               | 21.1 (3.6)                 | < 0.001 |
| Serum albumine (g/L)                                             | 43.6 (3.3)               | 39.8 (5.0)                 | < 0.001 |
| Albuminuria (g/mol creatinine)                                   | 1.8 [1.0, 4.6]           | 65.0 [15.7, 193.8]         | < 0.001 |
| Makroalbuminuria (%)<br>mean (standard deviation); median [inter | 8<br>quartile range]     | 65                         | <0.001  |

## Changes in bone biomarkers as a function of eGFR

The increase in FGF23 SDS was higher in vitamin D treated pts. compared to a at eGFR 20 - 40 ml/min per 1.73 m<sup>2</sup> (n.s.). Positive changes for Klotho SDS and sclerostin levels were noted in vitamin D treated pts. and negative changes in controls. Significant group differences were noted for Klotho at eGFR 40 - 70 per 1.73 m<sup>2</sup> and for sclerostin at eGFR 60 - 70 ml/min per 1.73 m<sup>2</sup>.

**Fig. 3:** Changes in bone biomarkers in vitamin D treated patients in comparison to controls Solid line denotes vitamin D group, dark grey its 95% CI; dashed line denotes control, light grey its



## Multiple linear regression analysis

|         | <b>— •</b> • |                  | <br>        |
|---------|--------------|------------------|-------------|
| Outcomo | Drodictor    | Doto coofficient | Adjusted D4 |
|         |              |                  |             |

## **Efficacy of vitamin D supplementation**

Vitamin D dosages were higher (median 1770 IU/day vs. 1099 IU/day) and duration of Tx was longer (289 vs. 212 days) in the ERGO group compared to the 4C group (each p<0.002 25(OH)D levels were normalized in 14/20 ERGO pts. and in 8/20 4C pts., respectively (p<0.05). Final 25(OH)D levels correlated with body size related vitamin D dosage, age, eGFR, albuminuria and presence of macroalbuminuria.

 Table 2: Determinants of final 25(OH)D levels

|                             | r     | р      |
|-----------------------------|-------|--------|
| otal dose / m <sup>2</sup>  | 0.53  | <0.001 |
| otal dose / kg              | 0.56  | <0.001 |
| Daily dose / m <sup>2</sup> | 0.49  | 0.001  |
| Daily dose / kg             | 0.53  | <0.001 |
| Age                         | -0.35 | 0.027  |
| GFR                         | 0.43  | 0.007  |
| Ibuminuria                  | -0.42 | 0.008  |
| Aakroalbuminuri             | -0.35 | 0.029  |

CKD - MBD

Dieter Haffner

358--SP

Fig 1: Change in 25(OH)D and Vitamin dosage





### Conclusions

The efficacy of vitamin D supplementation is associated with body size related vitamin D dosage in pediatric CKD patients. Vitamin D supplementation normalizes Klotho and sclerostin levels in patients with mild CKD, but further stimulates FGF23 levels in advanced CKD.

#### \*supported by a ESPN grant (# ESPN 2014.3)

