

BONE HISTOMORPHOMETRY DATA IN RENAL TRANSPLANT PATIENTS WITH HYPERCALCEMIC HYPERPARATHYROIDISM WITH AND WITHOUT CINACALCET TREATMENT

Tiago J Carvalho¹, Catarina Carvalho^{2,4}, <u>Teresa Adragão</u>¹, Jorge Dickson¹, Cristina Jorge¹, Rita Birne¹, André Weigert¹, Margarida Bruges¹, Patrícia Matias¹, Regina Oliveira¹, Ana Casqueiro¹, João Frazão^{3,4}, Domingos Machado¹

¹Department of Nephrology, Santa Cruz Hospital, Carnaxide, Portugal; ²Braga Hospital, Braga, Portugal; ³Department of Nephrology, São João Hospital Centre, Porto, Portugal; ⁴Instituto de Investigação e Inovação em Saúde, Porto University, Porto, Portugal

INTRODUCTION

At the moment of renal transplantation (RT), more than two thirds of end-stage renal disease (ESRD) patients have secondary hyperparathyroidism (HPT), with reduced bone mineral density and increased risk of fracture, aggravated by the concomitant immunosuppression^(1,2). One year after RT, 50% still have HPT, with elevated iPTH, hypercalcemia and hypophosphatemia^(3,4).

The calcimimetic agent <u>cinacalcet</u> (CIN) <u>corrects</u> <u>hypercalcemia in patients with HPT after RT</u>, without significant adverse effects^(5,6,7,8,9).

However, data on bone histomorphometry with cinacalcet usage is still lacking, with an eventual risk of adynamic bone disease as of yet not being evaluated.

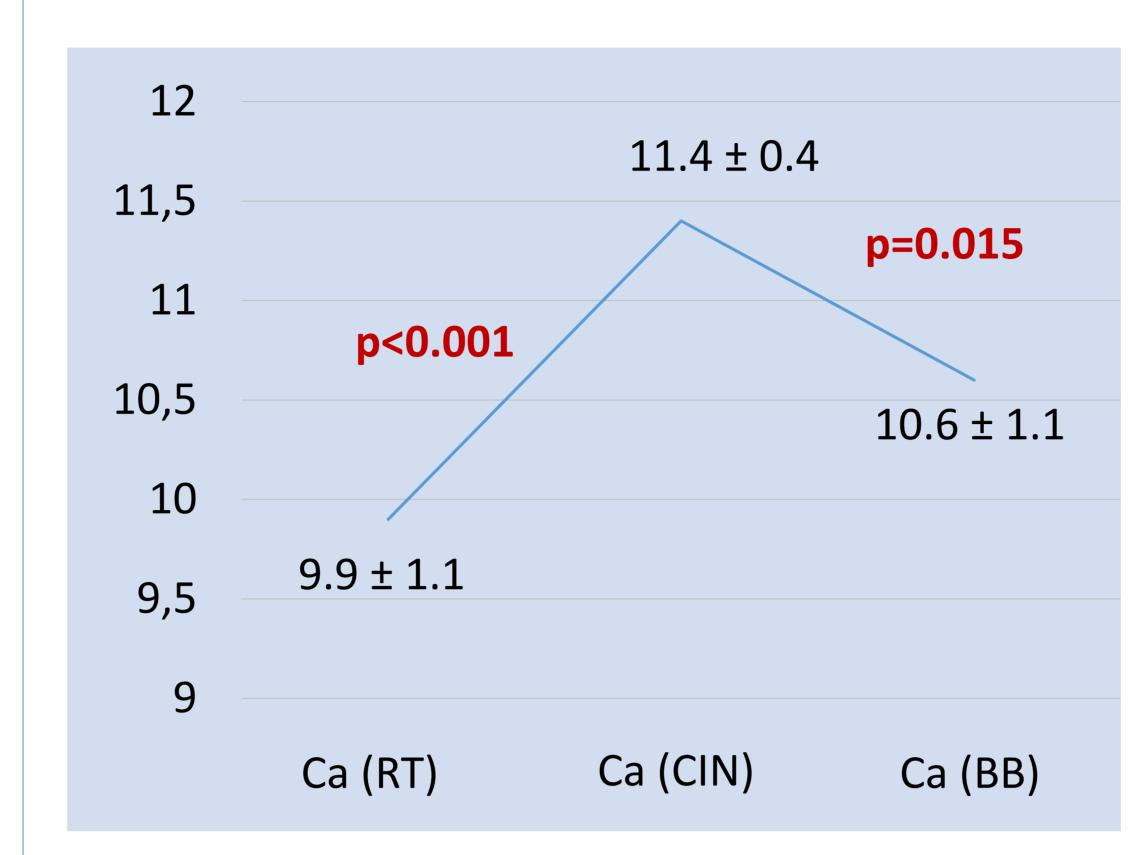
OBJECTIVES

✓ Analyze histomorphometric data from bone biopsies (BB) in patients with hypercalcemic hyperparathyroidism after RT.

METHODS

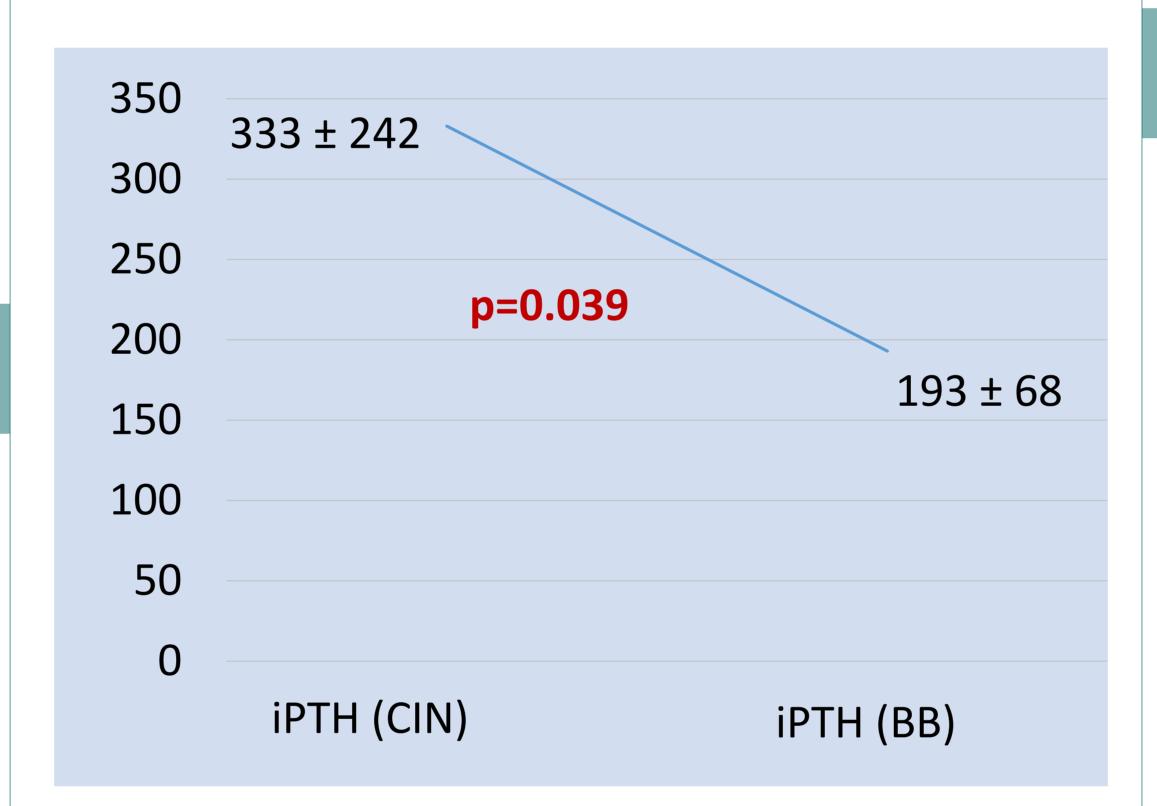
We conducted a <u>prospective observational study</u> with a sample of 27 patients, with the following characteristics:

Sex	Number (n)	Percentage (%)
Male Female	15 12	56 44
Diabetes <i>mellitus</i>	2	7.4


Mean age: 55.4 ± 11 years

Mean dialysis time: 88 ± 56.3 months

- ✓ Bone biopsy was performed 81 ± 64 months after RT
- √ 15 patients (56%) were treated with cinacalcet (group CIN)
- ✓ CIN was initiated 8.0 (25th 4.9; 75th 55.2) months after RT
- ✓ CIN treatment duration at the time of bone biopsy was 38 ± 17 months
- ✓ CIN dose was 34 ± 14.4 mg/day, with a minimal dose of 15mg/day and maximum dose of 60mg/day


RESULTS

Calcium (Ca) levels in group CIN showed an increase between transplant date and CIN initiation and then a decrease between CIN initiation and BB (figure 1).

Figure 1: Ca levels evolution between RT, CIN initiation and BB (mg/dL).

iPTH levels showed a decrease between CIN initiation and BB (figure 2).

Figure 2: PTH levels evolution between CIN initiation and BB (pg/mL).

At the time of BB, the characteristics of the patients in group CIN compared with group no-CIN are indicated in table 1.

	Group CIN (n=15)	Group no- CIN (n=12)	p value
Age (years)	55.3 ± 8.4	55.5 ± 13.9	0.958
Dialysis time (months)	80.9 ± 37.8	96.9 ± 74.3	0.474
RT time (months)	67.5 ± 48.0	100.1 ± 79.4	0.199
eGFR (CKD- EPI) (mL/min/ 1.73m ²)	62.2 ± 25.5	56.7 ± 23.2	0.565
iPTH (pg/mL)	191.3 ± 66.4	151.2 ± 53.1	0.102

Table 1: Characteristics of group CIN vs group no-CIN at the time of BB.

RESULTS

Histomorphometric analysis of BB between groups CIN and non-CIN is shown in table 2.

	Group CIN (n=15)	Group no-CIN (n=12)	p value
Bone volume/Total volume <16%	33%	42%	0.656
Bone formation rate/Bone surface >3.8mm ³ /cm ² /year	90%	71%	0.323
Osteoblast surface/Bone surface 0,2-10%	67%	25%	0.031
Osteoclast surface/Bone surface 0,15-1,2%	60%	58%	0.930
Trabecular thickness (μm)	107.20 ± 34.58	84.94 ± 20.86	0.047

Table 2: Histomorphometric analysis of BB (group CIN vs group no-CIN).

CONCLUSIONS

Despite the significant iPTH decrease in RT patients treated with CIN, <u>higher bone formation rate was still</u> present at the time of bone biopsy.

A higher percentage of patients treated with CIN had a normal osteoblast surface/bone surface and higher trabecular thickness: there was <u>no evidence of low</u> bone formation rate.

Despite the relatively small sample size and low CIN dose used (mean dose 34mg/day), our findings suggest that treatment of posttransplant hyperparathyroidism with CIN is <u>safe</u> and is <u>not associated with adynamic bone disease</u>.

Further prospective, randomized trials with larger samples evaluating bone histomorphometry are needed to confirm these findings.

BIBLIOGRAPHY

- 1. Evanepoel P, et al; Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study; NDT 2004; 19: 1281.
- 2. Torres A, et al; Calcium metabolism and skeletal problems after transplantation. JASN 2002; 13: 551.
- 3. Dumoulin G, et al; No trend toward a spontaneous improvement of hyperparathyroidism and high bone turnover in normocalcemic long-term renal transplant reginients. AIKD 1007: 20: 746
- transplant recipients. AJKD 1997; 29: 746.

 4. Covic A, et al. Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular
- mortality and cardiovascular events in chronic kidney disease. NDT 2009; 24: 1506.

 5. Thiem U, Gessl A and Borchhardt K; Long-Term Clinical Practice Experience with Cinacalcet for Treatment of Hypercalcemic Hyperparathyroidism after Kidney

Transplantation; BioMed Research International Volume 2015, Article ID 292654.

- 6. Evanepoel P, et al; A Randomized Study Evaluating Cinacalcet to Treat Hypercalcemia in Renal Transplant Recipients With Persistent Hyperparathyroidism; AJOT 2014; 14: 2545–2555.
- 7. Cohen JB, et al; Cinacalcet for the Treatment of Hyperparathyroidism in Kidney Transplant Recipients: A Systematic Review and Meta-analysis; Transplantation 2012;94: 1041-1048.
- 8. Torregrosa JV, et al; Cinacalcet for hypercalcaemic secondary hyperparathyroidism after renal transplantation: a multicentre, retrospective, 3-year study; Nephrology 19 (2014) 84–93.
- 9. Borchhardt K, Sulzbacher D, Benesh T, Haas M, Sunder-Plassmann G; Cinacalcet decreases bone formation rate in hypercalcemic hyperparathyroidism after kidney transplantation; American Journal of Nephrology 2010; 31(6): 482-9.

