${ }^{1}$ Department of Occupational，Metabolic and Internal Diseases，Medical University of Gdansk，Poland 2 Department of Athletics，Academy of Physical Education and Sport，Gdansk，Poland， Department of Physiology，Gdansk University of Physical Education and Sport，Gdansk，Poland， ${ }^{4}$ Department of Tourism and Recreation，Gdansk University of Physical Education and Sport，Gdansk，Poland， ${ }^{5}$ Department of Clinical Nutrition，Medical University of Gdansk，Gdansk，Poland．
In contrast to the majority of previous studies we did not observed any decrease of the kidney function during an ultramarathon．According to some authors the incidence of AKI in healthy runners after ultramarathon is close to 100% ．
Presented study is somehow unique because urine was collected 4 times during the 100 km run and creatinine clearance was measured．In the previous studies serum creatinine level was measured and estimated GFR was calculated．Serum creatinine is the best marker of kidney function but is not ideal．Its level is influenced not only by kidney function but also by muscle metabolism．The rise of creatinine after exercise is caused by a muscle damage．

The formulas used to estimate GFR seems to be useless in young healthy man during physical

 exercise．The second interesting finding of the study was that ACR was not related to intensity of the run but rather reflected a complete physical exhaustion．The highest ACR was observed at the end of the study when the running pace was very low．

	Before	25 km	50km	75km	100 km	rest
Creatinine（mg／d）	0，88 $\pm 0,11$	0，97 \pm 0，11	1，00 0,14	1，07士 0，167＊	1，10 $\pm 0,20^{*}$	0，97 \pm 0，12
Urea（mg／dl）	$34,29 \pm 7,25$	40，12 $\pm 7,91$	45，35 $\pm 10,85$	51，65 $\pm 13,42^{*}$	55，94 $\pm 15,34 *$	49，88さ 12，02＊
Uric acid（ $\mathrm{mg} / \mathrm{dll}$ ）	$5,15 \pm 0,87$	5，32 0，96＊	5，62 $\pm 1,19^{*}$	5，82 $\pm 1,37^{*}$	5，94 $\pm 1,50^{*}$	6，09 $\pm 1,43^{*}$
eGFR MDRD（ $\mathrm{ml} / \mathrm{min}$ ）	98，53 $\pm 15,44$	87，06 $\pm 12,40$	85土 13，96	78，88 $\pm 15,33^{*}$	76，47 $\pm 14,66^{*}$	$88,00 \pm 14,33$
eGFR MDRD BSA（ $\mathrm{ml} / \mathrm{min}$ ）	$111,24 \pm 19,22$	98，53 $\pm 15,17$	95，88 $\pm 16,22$	89，18 $\pm 19,37^{*}$	86，65 $\pm 18,87^{*}$	$98,59 \pm 18,12$
eGFR CKD EPI（ml／min	105，59 $\pm 10,08$	97，12 $\pm 11,88$	94，59 $\pm 14,06$	87，88 $\pm 15,37 *$	85，94 $\pm 16,82^{*}$	97，12 $\pm 12,34$
eGFR CKD EPI BSA（ $\mathrm{ml} / \mathrm{min}$ ）	$119,59 \pm 14,53$	109，82 $\pm 15,55$	$106,82 \pm 16,75$	99，41 $\pm 19,23^{*}$	97，35 $\pm 21,51^{*}$	107，29 $\pm 18,84$
eCrCl C－G（ml／min	$124,59 \pm 23,08$	$112,00 \pm 18,94$	$109,76 \pm 19,75$	102，88 $\pm 22,60$	101，00 $\pm 3,49^{*}$	113，53 $\pm 22,63$
$\mathrm{CrCl}(\mathrm{ml} / \mathrm{min})$	141，81 $\pm 25,08$	136，93 $\pm 47,55$	144，04 $\pm 28,20$	120，33 $\pm 38,83$	137，78 $\pm 41,04$	150，50 $\pm 43,33$
Diuresis（ $\mathrm{ml} / \mathrm{min}$ ）	1，725 $\pm 0,72$	1，85 $\pm 1,27$	1，20 $\pm 0,55$	1，59 $\pm 2,01$	$1,60 \pm 1,82$	1，07 $\pm 0,41$

ACR was normal before run．The significant increase was observed in everyone There was the rapid increase of ACR during the last 25 km when the rate was the lowest． There was no correlation between run rate and ACR

