

ASSISTANCE PUBLIQUE

Universitatives PREDICTIVE FEATURES OF CHRONIC KIDNEY DISEASE IN aHUS

HÔPITAUX

Matthieu Jamme¹, Quentin Raimbourg², Dominique Chauveau³, Amélie Seguin⁴, Claire Presne⁵, Pierre Perez⁶, Pierre Gobert⁷, Alain Wynckel⁸, François Provôt⁹, Yahsou Delmas¹⁰, Christiane Mousson¹¹, Aude Servais¹², Laurence Vrigneaud¹³, Agnès Veyradier¹⁴, Eric Rondeau¹⁵ and Paul Coppo¹⁶, French Thrombotic Microangiopathies Reference Center.

¹Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Paris, France. ²Néphrologie, Hôpital Bichat, Paris, France. ³Néphrologie Immunologie clinique, Hôpital Rangueil, Toulouse, France. ⁴Réanimation médicale, CHU Caen, Caen, France. ⁵Néphrologie-Médecine interne, Hôpital Sud, Amiens, France. ⁶Réanimation médicale, Hôpital Brabois, Nancy, France. ⁷Néphrologie, Hôpital Henri Duffaut, Avignon, France. ⁸Néphrologie, Hôpital Maison Blanche, Reims, France. ⁹Néphrologie, Hôpital Calmette, Lille, France. ¹⁰Néphrologie-Dialyse-Transplantation, CHU Bordeaux, Bordeaux, France. ¹¹Néphrologie, CHU Dijon, Dijon, France. ¹²Néphrologie, Hôpital Necker Enfants malades, Paris, France. ¹³Néphrologie, Hôpital de Valenciennes, Valenciennes, France. ¹⁴Hématologie Biologique, Hôpital Lariboisière, Paris, France. ¹⁵Hématologie, Hôpital Saint Antoine, Paris, France. Email: mathieu.jamme@aphp.fr

INTRODUCTION

- \succ Chronic kidney disease (CKD) is a frequent and serious complication of atypical hemolytic uremic syndrome (aHUS)¹.
- \geq No reliable biological markers allow a rapid and accurate diagnosis of aHUS, while highly efficient targeted therapy are available².
- >Consequently, the use of targeted therapies is limited at the acute phase of the disease and rapidly available prognostic surrogate markers are urgently needed⁴.

>We aimed to develop a simple accurate model to predict the risk of CKD in aHUS on the basis on clinical and biological features available at hospital admission

and treated by dialysis and/or plasma exchange only.

METHODS

 \succ Multicenter retrospective study

Patients included in our National Registry :

>Thrombocytopenia and microangiopathic

haemolytic anemia

>Acute kidney injury

>ADAMTS 13 activity > 20%

 \succ Excluded : HIV infection, cancer, chemotherapy, transplantation, connective tissue disease and malignant hypertension, STEC infection and patients with *E. coli* infection or colonization

From October 2000 to June 2014

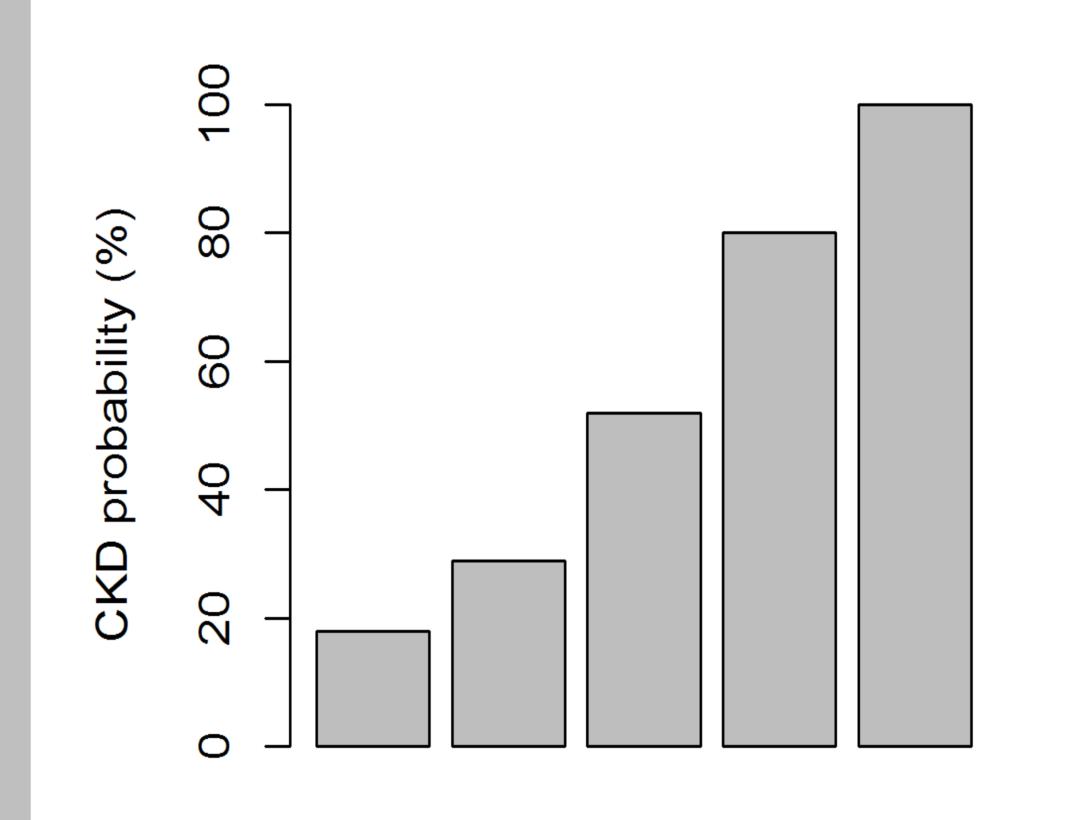
> Outcome : eGFR < 60mL/min/1,73m² in 1-years follow-up

RESULTS

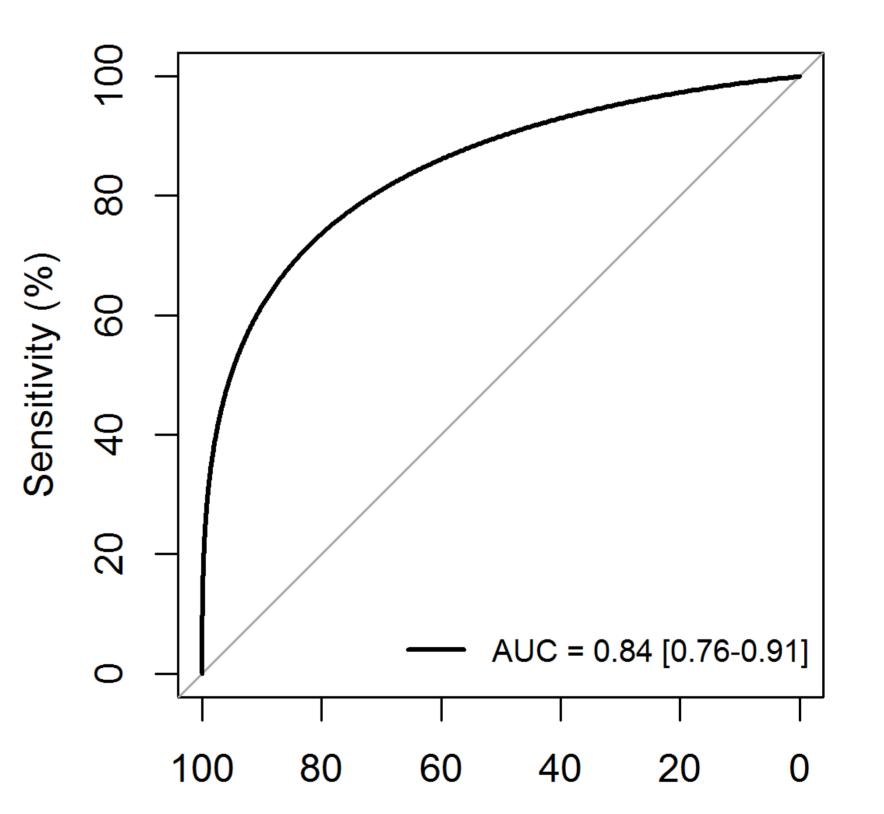
Table 1. Univariate analysis

Variables		CKD	No CKD (n = 44)	P value
		(n = 66)		
Arterial pressure (mmHg)	Systolic	160 [146-180]	140 [116-152]	< .001
	Diastolic	90 [80-100]	80 [70-90]	< .001
	Mean	113 [103-123]	97 [89-113]	< .001
Digestive symptoms	Overall	36 (54.5%)	23 (53.5%)	> .9
Neurologic symptoms	Overall	31 (47%)	18 (40.9%)	.56
Blood cell count	Haemoglobin (g/dL)	8.3 [6.9-9.7]	9.4 [8.3-10.5]	.006
	Platelets (10 ³ /µL)	84 [49-121]	41 [25-59]	< .001
Renal impairment	Serum creatinine (mg/dL)	6.3 [3.7-8.8]	2.8 [1.4-4.1]	< .001
	Renal replacement therapy	54 (81.8%)	10 (22.7%)	< .001
ADAMTS13 (%)		41 [30-62]	51 [40-68]	.08
Infection	Fever	10 (15.1%)	12 (29.2%)	.09
	Documented	9 (13.6%)	15 (34.1%)	.02

> Multivariable logistic regression with multiple imputation by chained equation


 Table 2. Prognosis Score

- Scoring system constructed based on the regression
- coefficient with internal bootstrap validation


Serum creatinine (mg/dL)	Point
0-1	0
1.1-3.39	1
3.4-5.64	2
> 5.65	3
Platelets (10 ³ /μL)	
0-59	0
> 60	1
Mean arterial pressure (mmHg)	
0-105	0

anti-	24 (36.4%)	12 (27.2%)	.41
Plasma exchange (PE)	53 (80.3%)	36 (81.8%)	.9
Number of PE/patient	11 [5-20]	8 [3-14]	.32
Death	4 (6.1%)	1 (2.3%)	
Time to platelets recovery (d)	11 [5-33]	6 [6-16]	.25
	Number of PE/patient Death	Number of PE/patient11 [5-20]Death4 (6.1%)	Number of PE/patient 11 [5-20] 8 [3-14] Death 4 (6.1%) 1 (2.3%)

Fig 1. Probability of CKD according score

Fig 2. ROC curve

•COII

CONCLUSIONS

Solution Series S

> Risk factors for CKD were a higher blood pressure on admission (p < .001), a severe renal involvement on diagnosis (p < .001) and renal replacement therapy requirement (p < .001) and a **mildly decreased platelet count** on diagnosis (p < .001).

>Patients with a prognostic score < 2 had no or mild renal involvement (8.3 %), more pronounced thrombocytopenia (27 [8-41] G/L) and a normal or mildly increased MAP (95 [86-100] mmHg). Their outcome was excellent with plasma exchange.

>Our clinical score based on admission data is able to predict persistent renal failure under plasma exchange; it should therefore help identifying patients suitable for alternative therapies frontline, such as complement blockers.

DOI: 10.3252/pso.eu.54ERA.2017

REFERENCES:

1. Noris M. et al. Relative Role of Genetic Complement Abnormalities in Sporadic and Familial aHUS and Their Impact on Clinical Phenotype. Clin J Am Soc Nephrol 5(10), 1844–1849 (2010).

2. George JN. et al. Syndromes of Thrombotic Microangiopathy. NEJM 371(7), 654-666 (2014).

3. Legender C. et al. Terminal Complement Inhibitor Eculizumab in Atypical Hemolytic–Uremic Syndrome. NEJM 368(23), 654-666 (2014).

4. Zuber J. et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 8(11), 643–657 (2012).

ePosters supported by F. Hoffmann- La Roche Ltd.