INTRAVENOUS ADMINISTRATION OF MESENCHYMAL STROMAL CELLS MODULATES RENAL LIPID METABOLISM IN RATS

P. ERPICUM^{1,2}, P. ROWART¹, L. POMA¹, J-M KRZESINSKI^{2,}, O. DETRY³ and F. JOURET^{1,2} ¹ Laboratory of Nephrology, GIGA Cardio-Vascular Sciences Departments (Ulg CHU) of ² Nephrology and ³ Abdominal Surgery, University of Liege, Liege, Belgium

Introduction

- Mesenchymal stromal cells (MSC) represent a heterogeneous population of fibroblast-like adult multipotent cells
- ✓ MSC have anti-inflammatory, immune-regulatory and tissue repair properties
- ✓ MSC attenuate renal ischemia/reperfusion (I/R) injury in rodents
- ✓ The mechanisms of MSC-induced nephro-protection remain unclear

Materials and Methods

- ✓ Male 10-week-old Lewis rats were i.v. infused with bone marrow-derived MSC (1.5x10⁶ cells in 1 ml saline; MSCD-7 group, n=6) or equivalent volume of saline (SD-7 group, n=6) 7 days before nephrectomy
- Messenger RNAs were extracted from kidneys. Libraries were prepared for each sample using Truseq mRNA stranded kit and sequenced on a Nextseq 500 sequencer (average of 20 million 2x75-bp reads per library)
- ✓ Reads were mapped onto the rat reference genome using TopHat. Resulting data were transferred to Cufflinks and Cuffmerge to generate a transcriptome assembly
- Identification of genes differentially regulated was performed with Cuffdiff
- ✓ Functional enrichment analysis was performed using WEB-based Gene SeT AnaLysis Toolkit
- Comparative real-time qPCR and immunoblotting were performed on kidney lysates of MSCD-7 versus SD-7 rats

					Kesu	Its					
	Pathway name	Number of genes /reference genes in each category	p	200 180		SD-7 SMSCD-7	1,8				
-	Adipogenesis	10/129	5 x10 -7	160 -						*	
	Insulin signaling	9/158	1.36 -5	140 -				Ī		I	
	Fatty a sid bissy with a sis	E/20	1 20 -5				Ŭ	т	T	т	

Fatty acid biosynthesis	5/28	1.36 -5				
IL-6 signaling pathway	7/114	0.0001				
B cell receptor signaling	8/199	0.0003				
pathway						
ErbB signaling pathway	5/60	0.0003				
IL-3 signaling pathway	6/110	0.0004				
Upregulated pathways						
Nuclear receptors in	4/ 39	0.0001				
lipid metabolism and						
toxicity						
Protessome degradation	2/50	0.0490				
Troleasonne degradation	2/59	0.0400				

Metabolic pathways involved in MSC-mediated conditioning based on the high-throughput RNA seq

Significantly differentially expressed genes involved in fatty acid biosynthesis and nuclear receptor in lipid metabolism pathways in MSCD-7 and SD-7 on the basis of the high-throughput RNA-sequencing and corresponding RT-qPCR analysis of the genes

SD-7

Scatter plot of the log2 (Fragments per Kilobase of sequence Per Million mapped reads, FKPM) counts of genes for SD-7 and MSCD-7 kidneys. Dots represent the 25908 genes differentially assessed, with orange dots corresponding to the significantly differentially expressed genes (FDR<0,05).

Immunoblotting of PPARa, phospho-PPARa and CD36 expression in MSCD-7 and SD-7 kidneys

Immunohistochemistry for FAT/CD36

300-11

Conclusions

✓MSC infusion is associated with critical modifications of lipid metabolism in renal parenchyma, including down-regulation of fatty acid (FA) biosynthesis and activation of PPARα pathway ✓MSC infusion may be associated with a prioritization of FA as sources of energy in proximal tubular cells, which may eventually prevent lipid peroxidation and attenuate renal I/R damage

