Does cardiac reserve improve with renal transplantation?

Shanmugakumar Chinnappa^{1,2}, Meguid El Nahas³, Andrew Mooney^{2,4}

¹Doncaseter and Bassetlaw Teaching Hospitals, ²University of Leeds, ³University of Sheffield, ⁴ Leeds Teaching Hospitals United Kingdom

Introduction

The treatment modality that has consistently shown to improve cardiovascular disease morbidity and mortality in end stage renal disease (ESRD) is renal transplantation (RTx). Cardiac imaging studies have shown that left ventricular hypertrophy regresses with kidney transplantation. However, elucidation of the corresponding cardiac functional changes is still lacking.

Methods

In this pilot prospective study, 6 asymptomatic, non-diabetic male patients (>18 years) with CKD (stages 4-5) underwent symptom-limited cardiopulmonary exercise testing (CPX) before

Hypothesis

In the present study we tested the hypothesis that RTx improves peak cardiac power output (CPO_{max}) and cardiac reserve.

and after RTx. CPO_{max} was determined noninvasively using standard CO_2 rebreathing techniques for measuring cardiac output. Cardiac reserve, ΔCPO (W) = $CPO_{max} - CPO_{rest}$ was calculated. Comparison between study parameters before and after RTx was performed using paired sample t-test. A *P* value of <0.05 is considered significant. Results are presented as mean±SD.

Results

The patients had a mean age of 48.4 years. The median time to CPX testing post-transplantation was 5 months (range: 3 to 11 months). The changes in biochemical and CPX parameters are listed in Table 1. *All patients showed improvement in CPO_{max} and cardiac reserve.* The mean CPO_{max} improved by 19.1% following RTx (P=0.003). This resulted from the improvement in the pressure and volume generating capacities and the chronotropic reserve of the heart (Figure 1). There was no significant difference in the aerobic exercise capacity (VO_{2max}) and haemoglobin.

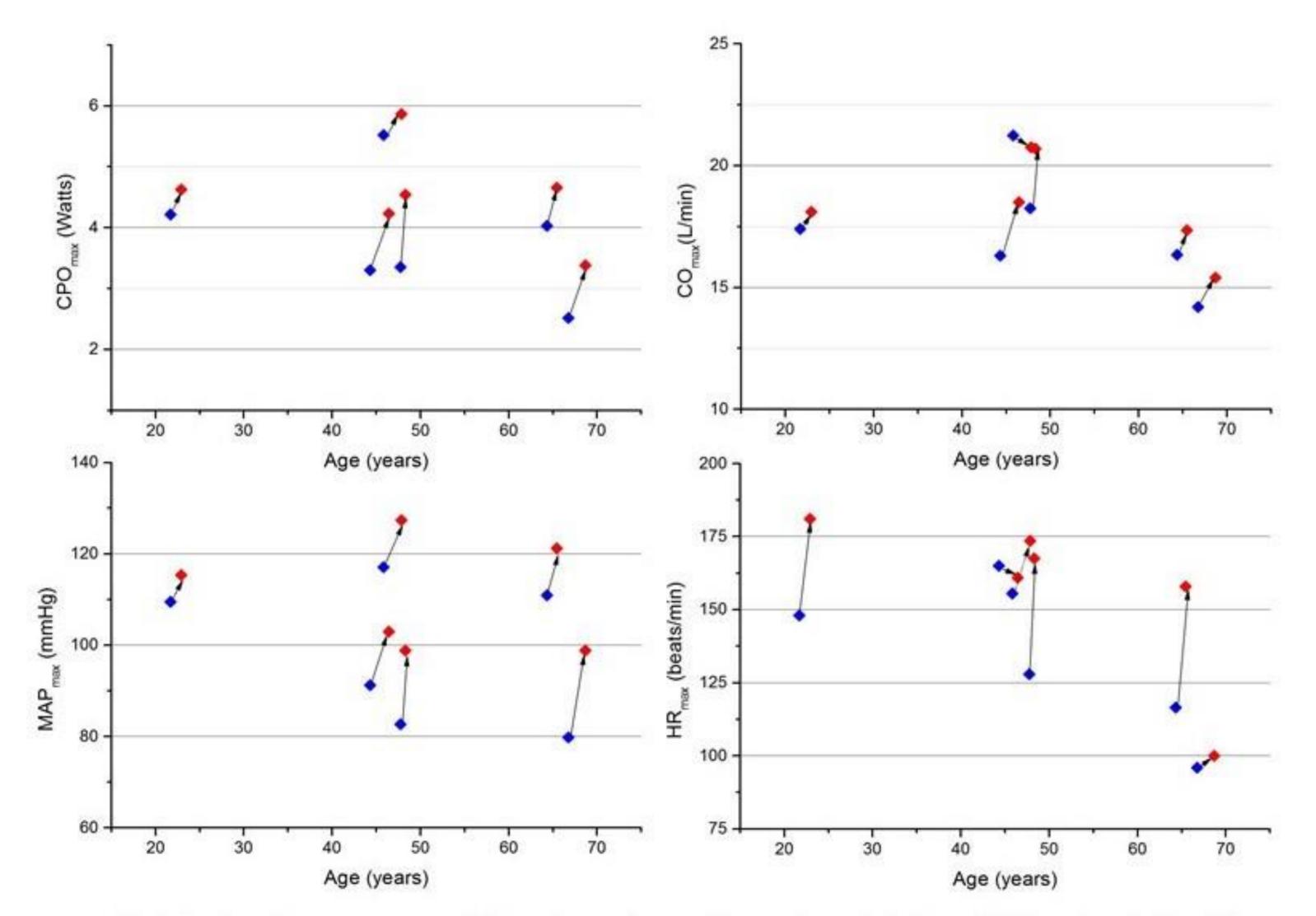


Table 1: Biochemical and CPX parameters before and after kidney transplantation

	Pre	Post	P value
Biochemistry			
eGFR (mL.min ⁻¹)	12.5 ± 4.0	64.9±6.5	0.0004
Hb (g.L ⁻¹)	114.7 ± 16.7	127.8 ± 10.5	0.12
Resting CPX para	meters		
HR _{rest} (min ⁻¹)	68.3±13.3	78.7±15	0.10
MAP (mmHg)	87.1±10.9	90.5±4.3	0.54
VO_2 (L.min ⁻¹)	0.34 ± 0.10	0.34±0.09	0.98
CO (L.min ⁻¹)	4.16±0.98	5.35±1.19	0.03
CPO _{rest} (W)	0.84±0.24	1.08±0.23	0.02
Peak CPX param	eters		
RER	1.07 ± 0.05	1.14 ± 0.03	0.03
VO _{2max} (L.min ⁻¹)	2.44 ± 0.60	2.62±0.45	0.21
HR _{max} (min ⁻¹)	134.8±26.1	156.8±29.1	0.04
MAP _{max} (mmHg)	98.5±15.9	110.8±12.3	0.001
CO _{max} (L.min. ⁻¹)	17.29 ± 2.37	18.47 ± 2.05	0.04
CPO _{max} (W)	3.82±1.03	4.55±0.80	0.003
ΔCPO (W)	2.95 ± 0.90	3.45±0.78	0.03

Fig 1: Peak cardiac power output (CPO_{max}) and other peak haemodynamic indices of CKD patients before (blue markers) and after (red markers) renal transplantation. CO_{max}: peak cardiac output, CPO_{max}: peak cardiac power output, HR_{max}: peak heart rate, MAP_{max}: peak mean arterial pressure.

Hb: haemoglobin, eGFR: estimated glomerular filtration rate, CO: cardiac output, CPO_{rest} : resting cardiac power output, CPO_{max} : peak exercise cardiac power output, HR_{rest} : resting heart rate, HR_{max} : peak exercise heart rate, RER: respiratory exchange ratio at peak exercise, VO_{2rest} : resting O_2 consumption rate, VO_{2max} : peak O_2 consumption rate. P value is for paired sample t-test.

Conclusion: The present study demonstrates that RTx improves cardiac reserve and the central haemodynamics in CKD. Further large studies are needed to fully elucidate the underlying mechanism of such improvement. As only a small proportion of advanced CKD or ESRD patients receive kidney transplantation, mimicking the cardiac benefits of RTx through pharmacotherapy or through special dialysis strategies may benefit a broader CKD or ESRD population.

We thank Yorkshire Kidney Research Fund and Sheffield Kidney Research Foundation for supporting the project

Renal transplantation - Epidemiology & outcome II

Shanmugakumar Chinnappa

DOI: 10.3252/pso.eu.54ERA.2017

