

E.M. Gielis^{1,2}, J.D.H. Anholts¹, J.W. de Fijter³, F.H.J. Claas¹, M. Eikmans¹

1. Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands 2. Lab. of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium 3. Dept. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands

MicroRNAs in urine help to identify acute rejection after kidney transplantation

Introduction

Today, the performance of a graft biopsy remains the golden standard for the diagnosis of transplant-related diseases, including acute kidney rejection. However, the invasiveness of this procedure and the inter-observer variability in the histological evaluation are important limitations. Therefore, there is a need for non-invasive diagnostic tools to detect acute rejection.

Objective

• To investigate miR and protein expression in urine sediment and supernatant of renal

Methods

- miR expression profiling was performed on RNA isolated from transplant biopsies and urine sediments using commercially available RTqPCR miR panels.
- The expression of fifteen miRs was quantified with qPCR in an independent set urine sediments.

MicroRNAs (miRs) are small non-coding RNAs, which represent a relatively novel type of biomarker, due to their stability in body fluids.

- transplant recipients
- To determine the predictive value of a combined cellular/molecular biomarker platform in urine for detection of acute rejection

- Protein levels of CXCL-9, CXCL-10, S100A8/A9 heterodimer, and soluble HLA class I were assessed in paired supernatant.

Rejection samples miR quantification miR profiling N = 115 (90 recipients)**Biopsy proven acute rejection** Urine sediment human miRNOME panels 3000 rpm, 10 minutes (Exiqon) RNAlater at -20° Bord/IA/IB n = 52 $\hat{\Gamma}$ IIA/IIB/III n = 49 **RNA** isolation ABMR n = 14 (microRNA) $\hat{\Gamma}$ cDNA synthesis **Control samples** Rejection n = 7 n = 8 UniSp6 2007-N = 55 (50 recipients)2015 $\hat{\Gamma}$ Control n = 8 n = 8 Paired protocol biopsy RT-qPCR LNA primers 15 microRNAs miR-92b-3p ↑ miR-296-3p ↑ miR-155-5p Data normalization ↑ miR-25-3p Acute rejection Control ↑ miR-142-3p miR-30c-5p ↑ miR-142-5p miR-423-3p Number of recipients (n) 50 90 ↓ miR-203a 1 miR-223 miR-755-5p Recipient gender (M/F) 44/46 36/14 miR-224-5p ↑ miR-21-5p Primary transplant (n) 77 49 ↓ miR-210-3p 49(20-75) 58(20-75) Recipient age at transplantation **Protein quantification**

CXCL-9

CXCL-10

Results

- A total of 263 ± 26 and 542 ± 53 miRs were significantly expressed (Cq<35 cycles) in biopsy specimens and urine sediments, respectively.
- Five of the fifteen candidate miRs were differentially expressed in urine between the rejection and control group, including miR-155-5p, miR-126-3p, miR-21-5p, miR-25-3p, and miR-615-3p [Fig.1].
- CXCL-9 and CXCL-10 protein levels were significantly elevated (> 8-fold) in urine supernatant from recipients with acute rejection. No significant different expression levels of S100A8/9 heterodimers were measured. The concentration of soluble HLA class I was below the detection limit in 46% of the rejection samples [Fig 2].
- There was no significant difference for any analyte between • samples from recipients with T-cell mediated rejection and those with antibody-mediated rejection.
- Each of the analytes was a significant predictor of acute rejection in univariate logistic regression analysis. In a multivariate model, three miRs (miR-155p, miR-25-3p, miR-615-3p) along with CXCL-9 levels and recipient age were independent predictors of acute rejection [Table 1, Fig. 3].

↓ miR-149-5p

Donor age	51 (17-79)	57(13-75)	0.087
(years, min-max)			
Donor Type (n)			
Living/Deceased	51/39	37/13	0.042
DGF (n)	29	5	0.003
Induction therapy (n)			
Anti-IL2R /Anti-CD52	80/6	43/7	0.229
Historical PRA > 5% (n)	27	2	<0.001

(years, min-max)

p-value

0.008

0.019

0.001

Table 1 Multivariate logistic regression

				Univariate logistic regression		Multivariate logistic regression	
				OR (95 % CI)	p-value	OR (95 % CI)	p-value
• • • • • • • • •			miR-21-5p	6.6 (2.9 – 15.1)	<0.001		
			miR-25-3p	27.2 (8.0 – 93.0)	<0.001	5.7 (1.1 – 27.8)	0.033
•••	A 8 /		miR-126-3p	4.2 (2.3 – 7.7)	<0.001		
			miR-155-5p	10.6 (4.6 – 24.6)	<0.001	5.0 (1.4 – 18.4)	0.015
Control	ດ Rejection Control		miR-615-3p	0.3 (0.1 – 0.6)	<0.001	0.12 (0.03 – 0.46)	0.002
			CXCL-9	10.9 (4.8 – 24.9)	<0.001	5.9 (2.0 – 17.2)	0.001
			CXCL-10	4.1 (2.3 – 7.4)	<0.001		
ig. 3	ROC Curve		Recipient gender	0.3 (0.1-0.6)	<0.001		
analysis	0,8 0,8 0,6 0,6 0,6		Primary transplant	0.12 (0.02-0.89)	0.038		
anarysis			Recipient age at transplantat	tion 0.96 (0.93 – 0.98)	0.001	0.93 (0.88 – 0.98)	0.004
			Donor Age	0.97 (0.95 – 1.00)	0.037		
			Donor Type	2.1 (1.0 - 4.1)	0.044		
			DGF	4.2 (1.5 – 11.4)	0.005		
_			Induction therapy	0.4 (0.1 – 1.2)	0.112		
			hPRA > 5%	11.1 (2.6 – 48.3)	0.001		
		Area Und miR-25-3 miR-155-1 miR-615-1 CXCL-9	ler the Curve p 0,822 5p 0,825 3p 0,708 0,858	Sens 92.4% Spec 82.9%			
	1 - Specificity	MiR-Cher	mokine model 0,947				

Conclusion

A combined measurement miR-25-3p, miR-155-5p, miR-615-3p the urine sediment and CXCL-9 helps to non-invasively identify acute transplant rejection.

ပိ

0

RA	790MP	Renal transplantation - Epidemiology & outcome I
54 E		E. Gielis

DOI: 10.3252/pso.eu.54ERA.2017