

STUDY OF THE EFFECT OF ADIPOSE TISSUE DERIVED STEM CELL (ASC) IN PROGRESSION OF RENAL DISEASE IN SHR RATS INDUCED TO METABOLIC SYNDROME

Nakamichi R¹., Oliveira CN¹., Silva EMMJ¹., Quinto BMR¹., Dalboni MA¹., Cesaretti ML.¹, Batista MC^{1,2} ¹Universidade Federal de São Paulo, ²Hospital Israelita Albert Einstein

Introduction: The visceral obesity, the main factor of Metabolic Syndrome (MS), determines a set of metabolic and hemodynamic abnormalities, which is linked to increased risk of kidney disease in the overall population. The adipose tissue is also considered an important source of stem cells, which can proliferate and differentiate into multiple cell lines reducing the expression of

Figure 3: Level of urinary protein in SHR rats exposed to MS and treated with ASC

inflammatory proteins.

Objective: The aim of the study is to evaluate the effect of ASC on the kidney disease progression in SHR rats induced to Metabolic Syndrome.

✓ **Subjects and Methods:** SHR male rats were induced to MS by hyperlipid diet for 12 weeks, and then treated with $2x10^5$ of ASC for 1 and 2 weeks, respectively. The rats were sacrificed for analysis the proteinuria, as well as the serum concentration of creatinine and lipid profile. Moreover, urine concentration of cystatin C and Ngal was measured by ELISA method. The characterization of ASC extracted from subcutaneous tissue of SHR control rats was performed through flow cytometry method. The results were expressed as mean values ± S.D. Difference groups were analysed by unparied Student's *t* test. *p*-Values <0.05 were considered significant.

ASC characterization

Figure 1: Characterization of ASC by flow cytometry method

10/03/16-branco 10/03/16-cd34 10/03/16-cd45

•p<0.05 vs. Control, *p<0,05 vs. MS, +p<0.05 vs. MS+ASC 1w; MS: Metabolic Syndrome, Ct+ASC 1w: Control+ ASC treatment for 1 week, MS+ASC 1w: Metabolic Syndrome+ ASC treatment for 1 week, MS+ASC 2w: Metabolic Syndrome + ASC treatment for 2 weeks (n=6)</p>

C 80

(A) Serum HDL-c, (B) Serum LDL-c, (C) Serum Triglycerides in SHR rats. *p<0.05 vs. Control, *p<0,05 vs. MS. MS: Metabolic Syndrome, Ct+ASC 1w: Control+ ASC treatment for 1 week, MS+ASC 1w: Metabolic Syndrome+ ASC treatment for 1 week, MS+ASC 2w: Metabolic Syndrome+ASC treatment for 2 weeks (n=6)

Renal Injury Biomarkers

Figure 5: Measurement of Ngal and cistatin C in SHR rats exposed to MS and treated with ASC

Urinalysis and blood chemistry

Figure 2: Level of serum creatinine in SHR rats exposed to MS and treated with ASC

*p<0.05 vs. Control. MS: Metabolic Syndrome, Ct+ASC 1w: Control+ ASC treatment for 1 week, MS+ASC 1w: Metabolic Syndrome+ ASC treatment for 1 week, MS+ASC 2w: Metabolic Syndrome for 2 weeks (n=6) (A) Serum cystatin C, (B) Urinary Ngal in SHR rats. • p<0.05 vs. Control, * p<0.05 vs. MS. MS: Metabolic Syndrome, Ct+ASC 1w: Control+ ASC treatment for 1 week, MS+ASC 1w: Metabolic Syndrome+ ASC treatment for 1 week, MS+ASC 2w: Metabolic Syndrome+ ASC treatment for 2 weeks (n=6)

Conclusion:

The treatment with ASC in SHR rats exposed to MS resulted in the attenuation of kidney disease progression.

Supported by FAPESP nº 2015/22318-8

renata.nakamichi@bol.com.br

Brazil

