A DECREASE IN INTACT PARATHYROID HORMONE (iPTH) LEVELS IS ASSOCIATED WITH HIGHER MORTALITY

Castillo E, Rodríguez-Osorio L, Pizarro S, Esteras R, Fernández R, Gracia-Iguacel C, Mahillo I, Ortiz A, Egido J, González-Parra E. Nephrology department. Fundación Jiménez Díaz. Madrid, Spain.

BACKGROUND:

The mortality of dialysis patients is 10- to 100-fold higher than in the general population. Baseline serum intact parathyroid hormone (iPTH) levels, and more recently, changes in serum iPTH levels (Δ PTH) over time, have been associated to mortality in dialysis.

METHODS:

We explored the relationship between \triangle PTH over 1 year with mortality over the next year in a prospective cohort of

145 prevalent haemodialysis patients from a single center that had median iPTH levels within guideline recommended levels at baseline.

RESULTS:

Median baseline iPTH levels were 205 (116.5, 386.1) pg/ml. Median \triangle iPTH between baseline and 1 year calculated in 115 patients was 85.2 ± 57.1 pg/ml. During the second year of follow-up, 27 patients died. \triangle iPTH was significantly higher in patients who survived (+157.30 ± 25.82 pg/ml) than in those who died (+39.03 ± 60.95 pg/ml), while baseline iPTH values were not significantly different. The highest mortality (48%) corresponded to patients with a decrease in \triangle iPTH (\triangle iPTH quartile 1, negative \triangle iPTH) and the lowest (12%) to quartile 3 (\triangle iPTH increase 101-300 pg/ml). In a logistic regression model, \triangle iPTH was associated with mortality with an odds ratio (OR) of 0.998 (95% CI 0.996-0999, p=0.038). In multivariable analysis, mortality risk was 73% and 88% lower for patients with \triangle iPTH 0-100 pg/ml and 101-300 pg/ml than for those with a decrease in \triangle iPTH. The OR for death of a decrease in \triangle iPTH was 4.131 (1.515-11.27) (p=0.006).

Variable	OR (95% CI)	P value	
Baseline age (years)	1.062 (1.030 – 1.096)	< 0.01	
Female sex	0.607 (0.301 – 1.225)	0.162	
Dyalisis vintage (years)	1.009 (0.942 – 1.080)	0.806	V
Baseline PTH (pg/ml)	1.001 (1.000– 1.002)	0.071	A
Baseline FGF23 (RU/ml)	1.000 (1.000 – 1.000)	0.327	Δ
Baseline calcium (mg/dl)	1.260 (0.792 – 2.002)	0.328	0
Baseline phosphate (mg/dl)	0.974 (0.888 – 1.068)	0.424	1
Baseline 25 (OH) Vit D (ng/dl)	0.996 (0.987 – 1.000)	0.321	>
Baseline albumin (g/dl)	0.379 (0.171 – 0.843)	0.013	
∆iPTH (pg/ml)			Mu
Q1 < 0	3.815 (1.452 – 10.03)	0.007	(∆il
Q2 0-100	0.735 (0.260 – 2.074)	0.555	
Q3 101 – 300	0.120 (0.029 – 0.502)	0.004	
Q4 > 300	0.464 (0.135 – 1.600)	0.224	

Variable	OR (95% CI)	P value
Age (years)	1.039 (1.001 – 1.079)	0.044
Δ iPTH (pg/ml)		
0-100	0.265 (0.076 – 0.924)	0.037
101 - 300	0.115 (0.027 – 0.490)	0.003
> 300	0.469 (0.130 – 1.690)	0.247

Univariate logistic regression models for predicting mortality. Higher baseline age, lower baseline serum albumin and a decreasing $\Delta iPTH$ ($\Delta iPTH < 0 \text{ pg/ml}$) within the first year are predictors of mortality.

Multivariable regression model for mortality prediction considering quartiles of $\Delta iPTH$ within the first year. Q1 $\Delta iPTH$ ($\Delta iPTH < 0$ pg/ml) was the comparator.

Changes in iPTH (Δ iPTH,pg/ml) during the first 12 months and mortality at 24 months. (A) Comparison of Δ iPTH within the first 12 months between survivors and deceased patients at 24 months. The mean Δ iPTH was higher in survivors than in deceased patients.

* P <0.05.

(B) Graphic representation of mortality according to quartiles of $\Delta iPTH$ in the first year: Q1 $\Delta iPTH$ <0 pg/ml; Q2 0±100 pg/ml; Q3 101±300 pg/ml; Q4 >301 pg/ml. * *P* <0.05 *** *p* <0.001 vs Q1.

CONCLUSIONS:

In prevalent hemodialysis patients with median baseline iPTH values within the guideline recommended range, a decrease in Δ iPTH was associated with higher mortality. Further studies are required to understand the mechanisms and therapeutic implications of this observation which challenges current clinical practice.

