Prediction of Hemodialysis Vascular Access Failure Using Data From Segmental Bioimpedance Analysis

Ji Young Kim, Hye Mi Seo, Miyeon Kim, Hyunwoo Kim

Division of Nephrology, Department of internal medicine, Jeju National University, School of medicine, Jeju, Korea

BACKGROUNDS

- Hemodialysis (HD) vascular access dysfunction is a major cause of morbidity and hospitalization in patients with end-stage renal disease (ESRD) on HD. Although most patients on HD undergo surveillance monitoring for vascular access such as measurement of access flow, the results have been variable and inconsistent.
- Bioimpedance analysis (BIA) has been widely used for the assessment of body water volume and nutritional status in patients with ESRD.

PURPOSE

The purpose of this study was to investigate whether segmental BIA can properly identifies regional fluid changes of limbs of ESRD patients on HD and it can be used to predict HD vascular access failure.

Table 2. Predictors for hemodialysis vascular assess failure

	Univariate		Multivariate	
Covariate	HR (95% CI)	P-value	HR (95% CI)	P-value
Age, per year	1.042 (1.009–1.076)	0.013	1.035 (0.992–1.080)	0.112
Gender, male/female	0.883 (0.431–1.809)	0.733	1.478 (0.570–3.832)	0.421
Body mass index, per kg/m ²	0.948 (0.858–1.048)	0.295		
Hemodialysis duration*	1.001 (0.994–1.007)	0.847		
Hypertension	0.829 (0.251–2.735)	0.758		
Diabetes mellitus	1.258 (0.613–2.578)	0.532	0.536 (0.190–1.517)	0.240
Coronary artery disease	2.365 (1.121–4.989)	0.024	2.927 (1.037-8.261)	0.042

SUBJECTS & METHODS

- Patient group
- 87 ESRD on HD
- Age: 63.5 ± 14.4 years
- 48 male, 39 female
- HD duration: 55.6 \pm 50.2 months

Body composition measurements of post-dialysis patients were carried out by segmental BIA, using eight tractile electrodes according to the manufacturer's instructions (InBody 2.0, Biospace Co. Ltd, Seoul, Korea). The difference of water volume between upper limbs was calculated from water volume of upper limb with vascular access for HD minus that of the opposite upper limb. Demographical, clinical and laboratory data at the time of the measurement of body composition were recorded. The primary outcome was primary unassisted vascular access patency within 3 months.

AVF vs. AVG 0.265 (0.125-0.562) 0.251 (0.098–0.644) 0.004 0.001 ACEIs or ARBs 0.832 (0.406–1.705) 0.615 **Beta-blockers** 1.380 (0.674-2.825) 0.379 Calcium channel blockers 0.741 (0.360–1.526) 0.416 1.980 (0.960-4.082) 0.064 2.368 (0.839-6.685) Statins 0.103 Anti-Platelet agents 1.092 (0.520-2.295) 0.816 Single-pool Kt/V, per 1 1.748 (0.277–11.024) 0.552 Hemoglobin, per g/dl 1.017 (0.721–1.433) 0.924 Serum albumin, per g/dl 1.240 (0.359-4.284) 0.734 LDL cholesterol, per mg/dl 1.002 (0.988–1.016) 0.775 HDL cholesterol, per mg/dl 0.989 (0.961-1.018) 0.473 Triglyceride, per mg/dl* 1.460 (0.784-2.717) 2.136 (0.814–5.604) 0.123 0.233 Total calcium, per mg/dl 0.809 (0.537-1.218) 0.309 Phosphate, per mg/dl 1.109 (0.920–1.337) 0.278 1.068 (0.841–1.356) 0.589 Parathyroid hormone, per pg/ml^* 0.881 (0.630–1.232) 0.460 Ferritin, per ng/ml* 1.834 (0.973-3.456) 1.818 (0.930–3.557) 0.081 0.061

RESULTS

Table 1. Baseline characteristics of patients according to the difference of water volume between upper limbs

Characteristics	Lowest tertile (<7.9%, n=29)	Middle tertile (7.9~13.3%, n=29)	Highest tertile (>13.3%, n=29)	<i>P-</i> value
Age, years	59.4 ± 16.0	68.1 ± 13.3	63.0 ± 12.9	0.069
Male, <i>n</i> (%)	19 (66)	16 (55)	13 (45)	0.285
Body mass index, kg/m ²	23.4 ± 3.8	23.1 ± 2.6	22.6 ± 4.2	0.674
Duration of hemodialysis, months	46.8 ± 39.2	59.0 ± 46.1	61.0 ± 62.9	0.513
Hypertension, n (%)	27 (93)	26 (90)	26 (90)	0.871
Diabetes mellitus, n (%)	16 (55)	11 (38)	16 (55)	0.371
Coronary artery disease, n (%)	8 (28)	8 (28)	4 (14)	0.354
Arteriovenous fistula, n (%)	26 (90)	24 (83)	22 (76)	0.380
Single pool Kt/V	1.58 ± 0.25	1.47 ± 0.18	1.62 ± 0.30	0.172
ACEIs or ARBs, n (%)	15 (52)	11 (38)	18 (62)	0.182
Beta-blockers, n (%)	12 (41)	10 (35)	16 (55)	0.270
Calcium channel blockers, n (%)	15 (52)	13 (45)	16 (55)	0.725
Vasodilators, n (%)	2 (7)	5 (17)	4 (14)	0.483
Statin, n (%)	10 (35)	17 (59)	11 (38)	0.134
Anti-platelet agents, n (%)	20 (69)	22 (76)	13 (45)	0.058
Hemoglobin, g/dL	10.9 ± 1.0	10.5 ± 0.6	10.3 ± 1.4	0.076
Serum albumin, g/dL	3.6 ± 0.4	3.7 ± 0.3	3.6 ± 0.3	0.713
Calcium-phosphorus product, mg ² /dL ²	48.7 ± 17.6	42.7 ± 13.6	44.0 ± 19.8	0.374
LDL-cholesterol, mg/dL	77.3 ± 25.3	73.9 ± 24.3	84.9 ± 31.4	0.306
Ferritin, ng/ml median (interquartile range)	139.0 (74.6~261.6)	142.7 (75.8~257.4)	154.5 (115.2~273.4)	0.453

Difference of water volume between upper limbs								
Lowest tertile	reference							
Middle tertile	1.739 (0.583–5.191)	0.321	1.115 (0.355–3.500)	0.852				
Highest tertile	3.501 (1.282–9.562)	0.014	3.284 (1.151–9.364)	0.026				

*Indicate log values.

ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker; LDL = low density lipoprotein; AVF = arteriovenous fistula; AVG = arteriovenous graft; CI = confidence interval; HDL = high-density lipoprotein; HR = Hazard ratio; LDL = low-density lipoprotein

Figure 1. Kaplan-Meier analysis for hemodialysis vascular access survival according to the difference of water volume between upper limbs

ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker LDL = low density lipoprotein

SUMMARY

Segmental BIA may be used as a tool that predict vascular access failure in the patients with ESRD on HD through calculating the difference of water volume between upper limbs.

