Association of Vascular Calcification and Residual Renal Function in Hemodialysis Patients

Young-Ki Lee, Dong Ho Shin, Ajin Cho, Jong-Woo Yoon, Yoo Jin Choi, Eun Ji Bae, Eun Yi Kim, Jieun Oh

Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea

Introduction

- Vascular calcification (VC) is common and may contribute to cardiovascular mortality in patients with end-stage renal disease.
- Little is known about the effect of residual renal function (RRF) on VC in patients on hemodialysis (HD).

Table 2. ABPM, PWV, and abdominal aorta calcification scoreIn HD patients according to KRU.

Variables	KRU <0.9 ml/min/1.73m ² (n = 53)	KRU ≥0.9 ml/min/1.73m² (n =53)	P- value
ABPM (mmHg)			
Daytime mean blood pressure	108.9±14.4	104.5±12.4	0.095
Nighttime blood pressure	102.6±15.4	100.4 ± 14.3	0.474
Non-dipper, n (%)	41 (80.4)	38 (79.2)	0.999

- We hypothesis that RRF was associated with VC and affected cardiac function and cardiovascular events.
- Therefore, we investigated the correlation between RRF expressed as GFR and VC in patients on HD and conducted echocardiography. Furthermore, new cardiovascular events were evaluated after study enrollment.

Methods

- One hundred six patients with RRF on maintenance HD for 3 months were recruited between January 2014 and February 2015 from 3 different HD centers.
- We used residual renal urea clearance (KRU) to measure RRF.

Urea clearance = $\frac{2 \times (\text{urine urea concentration} \times \text{urine volume})}{\text{urine collection duration} \times (\text{BUN1} + \text{BUN2})}$

* BUN1: sampled at the end of the first dialysis session of the week

baPWV (cm/s)	1836.1±250.4	1676.8±311.0	0.005
AACS	4.0 (1.0–10.0)	3.0 (0.0–8.0)	0.050

Figure 1. The association of abdominal aorta calcification score and KRU.

- * BUN2: sampled immediately before the next session
- To assess VC severity, we conducted abdominal aortic calcification score (AACS) analysis, ambulatory blood pressure monitoring, and brachial-ankle pulse wave velocity. We also performed echocardiography to evaluate cardiac function.

Results

Table 1. Baseline characteristics according to KRU.

Variables	KRU <0.9 ml/min/1.73m ² (n =53)	KRU ≥0.9 ml/min/1.73m² (n =53)	P- value	
Age (years)	58.2±9.1	60.0 ± 12.7	0.394	
Male, n (%)	26 (49.1)	29 (54.7)	0.697	
HD duration (months)	37.4 (19.5–56.6)	13.6 (7.0–42.9)	<0.001	
Diabetes, n (%)	31 (58.5)	29 (54.7)	0.695	
Coronary artery disease, n (%)	23 (43.4)	20 (37.0)	0.994	
Interdialytic weight gain (kg)	1.9±1.3	1.1±1.0	<0.001	
Residual renal urine (cc)	250 (120–400)	1000 (800–1575)	<0.001 0.03	
Diuretics, n (%)	32 (60.4)	42 (79.2)	0.03	
Resistance to ESAs, n (%)	8 (15.1)	2 (3.8)	0.046	
Hemoglobin (g/dL)	10.1 ± 1.1	10.2±1.3	0.854	
Albumin (g/dL)	3.8±0.4	3.7±0.5	0.862	
Calcium (mg/dL)	8.7 (8.1–9.1)	8.6 (8.2–8.9)	0.915	
Phosphate (mg/dL)	4.6±1.4	4.4±1.1	0.513	
Ca X P (mg ² /dL ²)	40.5 (34.2–45.1)	38.3 (30.8–43.8)	0.281	
Total cholesterol (mg/dL)	138 (107.0–160.0)	140.0 (110.5–164.5)	0.382	
LDL cholesterol (mg/dL)	72.0 (53.0–89.0)	86.0 (62.0–103.0)	0.024	
CRP (mg/L)	0.9 (0.4–3.0)	0.5 (0.3–1.1)	0.029	
Parathyroid hormone (pg/dL)	243.8 (102.4–415.2)	196.6 (118.8–346.0)	0.649	
β2-microglobulin (mg/L)	22.4±6.7	17.3±5.8	0.008	
KRU (mL/min/1.73m ²)	0.3 (0.2–0.6)	2.5 (1.5–3.0)	<0.001	
Single-pool Kt/V	1.6±0.4	1.5±0.3	0.591	

Figure 2A. Kaplan-Meier analysis of CV events in HD patients according to KRU. CV events were comparable patients with KRU <0.9 and KRU ≥0.9 ml/min/1.73m².

No at risk							
RRF > 0.9 ml/min/1.73m ²	23	23	23	23	12	0	
RRF < 0.9 ml/min/1.73m ²	23	22	18	16	7	0	

Figure 2B. Kaplan-Meier analysis of CV events in non-diabetic HD patients according to KRU. CV were significantly lower in patients with KRU ≥1.0 ml/min/1.73m².

Conclusion

- Increased AACS was independently associated with RRF deterioration. In particular, in non-diabetic patients on HD, CV events were higher in patients with a low RRF.
- This result suggests that preservation of RRF may prevent VC. In addition, the effort to protect RRF may be more important in nondiabetic than in diabetic patients on HD.

