# Vadadustat Does Not Prolong Corrected QT Interval in a Thorough QTc Study in Healthy Subjects

Peter A. McCullough;<sup>1</sup> Matthew R. Weir;<sup>2</sup> Akshay Buch;<sup>3</sup> Emil M. deGoma;<sup>3</sup> Qing Zuraw;<sup>3</sup> Amit Sharma;<sup>3</sup> Wenli Luo;<sup>3</sup> John P. Middleton<sup>4</sup>

<sup>1</sup>Department of Internal Medicine, Baylor University Medical Center, Dallas, TX, USA; <sup>2</sup>Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA; <sup>3</sup>Akebia Therapeutics, Inc., Cambridge, MA, USA; <sup>4</sup>Department of Medicine, Duke University, Durham, NC, USA

# Introduction

- Vadadustat is a hypoxia-inducible factor prolyl-hydroxylase domain inhibitor that is currently in development for the treatment of anemia associated with chronic kidney disease (CKD).
- Regulatory guidance ICH E14 recommends assessing the proarrhythmic potential of new clinical entities by thorough electrocardiographic (ECG) assessment of QTc (QT interval corrected for heart rate).<sup>1</sup>
- Patients with CKD are at high risk of arrhythmic cardiovascular events, frequently exhibit cardiac repolarization abnormalities, and are exposed to electrolyte shifts.<sup>2,3</sup> QTc prolongation—a finding on 12-lead ECG, indicative of delayed cardiac repolarization—is highly prevalent among patients with CKD,<sup>3-6</sup> affecting up to 65% of patients with end-stage renal disease,<sup>6</sup> and is associated with an increased risk

#### Subject disposition and characteristics at screening

- Of the 50 subjects enrolled, 47 (94%) completed the study; 3 (6%) subjects discontinued due to withdrawal of consent or noncompliance. All 50 subjects were included in the QTc and safety analyses, and 49 were included in the PK and PK/QTc analyses.
- Mean (± SD) age and body mass index at screening were 39 ± 12 years and 26 ± 3 kg/m<sup>2</sup>, respectively.
- The proportions of male and female subjects were similar (48% and 52%, respectively), and the majority (70%) of subjects were white.

### Vadadustat pharmacokinetics

 The C<sub>max</sub> and AUC values were dose proportional, while the T<sub>max</sub> and t<sub>1/2</sub> were similar for the

## Results





of cardiovascular death.<sup>7</sup>

- Preclinical studies (in vitro hERG potassium channel assay and in vivo studies in dogs) did not raise any concern for QTc prolongation with vadadustat.<sup>8</sup>
- The effect of vadadustat on cardiac repolarization was assessed in a thorough QT (TQT) study in healthy human subjects (NCT02062203).

## **Methods**

 This was a standard TQT, randomized crossover study; it comprised 4 sequential periods where a single dose of the following was administered: therapeutic study drug (vadadustat 600 mg) supratherapeutic study drug (vadadustat 1200 mg), placebo, and active control (moxifloxacin 400 mg) (Figure 1; Table 1).

### Figure 1. Study design



2 vadadustat doses (**Table 2**).

#### Table 2. Vadadustat pharmacokinetics

| Parameter,<br>geometric mean (CV%)* | Vadadustat 600 mg<br>(N = 49) | Vadadustat 1200 mg<br>(N = 49) |
|-------------------------------------|-------------------------------|--------------------------------|
| C <sub>max</sub> (µg/mL)            | 53.7 (25.5)                   | 89.3 (27.1)                    |
| AUC <sub>0-t</sub> (µg·h/mL)        | 383 (35.9)                    | 805 (35.6)                     |
| AUC₀₋∞ (µg∙h/mL)                    | 395 (37.5) <sup>‡</sup>       | 849 (38.2) <sup>‡</sup>        |
| T <sub>max</sub> (h) <sup>†</sup>   | 3.25 (1.25–6.25)              | 4.25 (2.25–8.25)               |
| t <sub>1/2</sub> (h)                | 4.95 (16.5) <sup>‡</sup>      | 5.48 (24.8) <sup>‡</sup>       |

\*Except where otherwise indicated. <sup>†</sup>median (min–max); <sup>‡</sup>N = 48. AUC<sub>0-∞</sub>, area under concentration-time curve extrapolated to infinity; AUC<sub>0-t</sub>, area under concentration-time curve from time 0 to last quantifiable concentration;  $C_{max}$ , maximum plasma concentration; CV, coefficient of variation;  $t_{1/2}$ , apparent terminal elimination half-life;  $T_{max}$ , time to  $C_{max}$ .

### Assay sensitivity

- Administration of moxifloxacin (positive control) demonstrated assay sensitivity (ie, the ability to detect clinically significant differences).
- Post-moxifloxacin least square (LS) mean ∆∆QTcF peaked at 13.1 ms at 3 hours, and the lower bound of the 90% CI was >5 ms at all 3 predefined time points (2, 3, and 4 hours; Figure 2), confirming assay sensitivity.

Figure 2. Effect of vadadustat on placebo-adjusted

#### Vadadustat plasma concentration (µg/mL)

Red and blue squares and vertical lines represent the observed mean  $\Delta\Delta$ QTcF and 90% CI, respectively, displayed at the median vadadustat concentration within each decile. The solid black line and gray shaded area represent the mean and 90% CI  $\Delta\Delta$ QTcF predicted based on a linear mixed-effect model. The horizontal red and blue lines with notches show the range of plasma concentrations divided into deciles for the vadadustat 600 mg and 1200 mg doses, respectively.  $\Delta\Delta$ QTcF, placebo-adjusted change from baseline in QTcF; CI, confidence interval; QTcF, Fridericia-corrected QT interval.

 Concentration-effect modeling yielded a slope of 0.0233 ms/µg/mL (90% CI: 0.004–0.043) (Figure 3). The upper bound of the 90% CI was below 10 ms at all studied vadadustat concentrations (Figure 3).

#### Safety assessments

 The frequency of adverse events (AEs) was similar among the vadadustat 600 mg and 1200 mg groups (25% and 27%, respectively), compared with 6% and 15% in placebo and moxifloxacin groups, respectively (Table 3).

#### Table 3. Frequency of adverse events

| Subjects with AEs,<br>n (%) | Placebo<br>(N = 48) | Vadadustat<br>600 mg<br>(N = 49) | Vadadustat<br>1200 mg<br>(N = 49) | Moxifloxacin<br>400 mg<br>(N = 48) |
|-----------------------------|---------------------|----------------------------------|-----------------------------------|------------------------------------|
| Any AE                      | 3 (6%)              | 12 (25%)                         | 13 (27%)                          | 7 (15%)                            |
| AEs ≥5%*                    |                     |                                  |                                   |                                    |
| Nausea                      | 0                   | 4 (8%)                           | 6 (12%)                           | 1 (2%)                             |
| Diarrhea                    | 0                   | 4 (8%)                           | 6 (12%)                           | 1 (2%)                             |
| Headache                    | 2 (4%)              | 4 (8%)                           | 5 (10%)                           | 1 (2%)                             |
| Abdominal pain              | 0                   | 1 (2%)                           | 3 (6%)                            | 0                                  |
| Dizziness                   | 0                   | 3 (6%)                           | 0                                 | 1 (2%)                             |

\*Subjects were admitted to a clinical research unit on days -1, 7, 14, and 21; and discharged on days 2, 9, 16, and 23, respectively. Dosing days were 1, 8, 15, and 22. Subjects received a single oral dose of vadadustat (600 mg or 1200 mg) or placebo (all blinded), or moxifloxacin 400 mg (open-label) under fasting conditions. ECG, continuous electrocardiography from -1 to 25 hours; PK, pharmacokinetic sampling from 0–24 hours.

### Table 1. Key inclusion and exclusion criteria

| Inclusion | <ul> <li>Healthy nonsmoking male and female adults (age 18–55 years)</li> <li>Body mass index of 18.0–32.0 kg/m<sup>2</sup></li> </ul>                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exclusion | <ul> <li>Significant cardiovascular, pulmonary, or other disease</li> <li>Unexplained syncope, cardiac arrest, unexplained cardiac arrhythmias, structural heart disease, or family history of Long QT syndrome</li> </ul> |

- The study was double-blinded for the vadadustat and placebo treatments and open-label for the moxifloxacin treatment (**Figure 1**).
- During each treatment period, 12-lead ECGs (10 replicates) were obtained at baseline (predose) and at 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 hours postdose.
- Central, blinded manual adjudication of automated interval measurements was performed, and QT was corrected for heart rate using Fridericia's formula (QTcF = QT/RR<sup>0.33</sup>).



\*The mean  $\pm$  SD QTcF values at baseline were 406.1  $\pm$  19.4 ms, 406.5  $\pm$  19.1 ms, 407.0  $\pm$  17.7 ms, and 404.7  $\pm$  18.7 ms in vadadustat 600 mg, vadadustat 1200 mg, moxifloxacin 400 mg, and placebo groups, respectively.  $\Delta\Delta$ QTcF, placebo-adjusted change from baseline in QTcF; CI, confidence interval; LS, least square; QTcF, Fridericia-corrected QT interval.

#### Effect of vadadustat on QTc and other ECG parameters

 The peak LS mean ΔΔQTcF in the vadadustat 600 mg and 1200 mg groups was 1.2 ms (90% CI: -1.2 to 3.5) at 24 hours and 3.3 ms (1.0–5.7) at 8 hours, respectively (Figure 2). The upper bound of the 90% CIs was well \*Incidence of ≥5% in any group. AE, adverse event

- All AEs were mild; the most frequently reported AEs with vadadustat 600 mg and 1200 mg were nausea, diarrhea, headache, abdominal pain, and dizziness (Table 3).
- No serious AEs or deaths occurred in this study, and no AEs resulted in study discontinuation by the investigator.
- No AEs of torsades de pointes, ventricular tachycardia, ventricular fibrillation or flutter, syncope, or seizures were reported.
- No new safety concerns, clinically significant abnormalities or trends in clinical laboratory data, vital signs, or physical examination results were identified.

## Conclusions

 This TQT study showed no clinically meaningful effect of vadadustat on cardiac repolarization in healthy subjects administered a single oral therapeutic dose (600 mg) or

 Blood samples were collected after obtaining ECGs to assess vadadustat plasma concentrations.

### Statistical analyses

- At each time point of ECG measurement, the placebo-corrected change from baseline QTcF (ΔΔQTcF) and 2-sided 90% confidence interval (CI) were calculated for the 3 active treatments using a linear mixed-effects model.
- The relationship between vadadustat plasma concentration and  $\Delta\Delta$ QTcF was investigated using 3 different linear mixed-effects models. The model that fit the data best was used for predicting  $\Delta\Delta$ QTcF at the geometric mean peak vadadustat concentration.

below 10 ms (**Figure 2**), the threshold level of regulatory concern as defined by the ICH E14 guideline.<sup>1</sup>

- Following dosing with vadadustat 600 mg, no subject had QTcF >450 ms or  $\Delta$ QTcF >30 ms at any time point.
- Following dosing with vadadustat 1200 mg, 1 (2%) subject had QTcF >450 ms at 1 time point (451 ms at 3 hours), and no subject had ΔQTcF >30 ms at any time point.
- There were no clinically meaningful changes in heart rate or PR and QRS intervals.

supratherapeutic dose (1200 mg).

• The results of this TQT study, combined with prior preclinical evidence, support the lack of proarrhythmic potential of vadadustat.

#### References

**1)** ICH Harmonised Tripartite Guideline E14, Step 4. 2005. **2)** Dhondup T & Qian Q. *Blood Purif.* 2017;43:179-188. **3)** Sheif KA, et al. *Clin Cardiol.* 2014;37(7):417-421. **4)** Bignotto LH, et al. *J Bras Nefrol.* 2012;34(3):235-242. **5)** Genovesi S, et al. *Europace.* 2013;15(7): 1025-1033. **6)** Nie Y, et al. *PLoS One.* 2016;11(5):e0155445. **7)** Deo R, et al. *J Am Soc Nephrol.* 2016;27(2):559-569. **8)** Data on file, Akebia Therapeutics, Inc.

#### Acknowledgments

The study was funded by Akebia Therapeutics, Inc. Editorial assistance was provided by AlphaBioCom, LLC, King of Prussia, and funded by Akebia Therapeutics, Inc.



Contact Dr. McCullough at peteramccullough@gmail.com with any questions

### Presented at the 54th ERA-EDTA Congress 2017, Madrid, Spain, June 3–6, 2017



DOI: 10.3252/pso.eu.54ERA.2017



