THE ASSOCIATION BETWEEN SERUM URIC ACID AND MORTALITY IN THE CKD POPULATION : A LONGITUDINAL SURVEY OF A NATIONWIDE COHORT IN JAPAN

¹Keita Kamei, ¹Soichiro Kon, ¹Kazunobu Ichikawa, ¹Tsuneo Konta, ²Shouichi Fujimoto, ²Kunitoshi Iseki, ²Toshiki Moriyama, ²Kunihiro Yamagata, ²Kazuhiko Tsuruya, ²Ichiei Narita, ²Masahide Kondo, ²Masato Kasahara, ²Shibagaki Yugo, ²Koichi Asahi, and ²Tsuyoshi Watanabe

¹Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan. ²The steering committee for the "Design of the comprehensive health care system for chronic kidney disease (CKD) based on the individual risk assessment by Specific Health Check." and "REACH-J, AMED".

Background & Aim

Hyperuricemia is a risk factor for cardiovascular disease and is often observed in subjects with chronic kidney disease (CKD).

We used a national database of 40,832 subjects with CKD (dipstick) proteinuria (\geq 1+) or estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m²(aged 40–75; men, 52%), who participated in an annual health checkup, "The Specific Health Check and Guidance in Japan" in 2008, and examined the relationship between the gender-specific quartiles of serum uric acid levels at baseline and the 5-year mortality.

However, the association between uric acid levels and mortality in CKD subjects is still undetermined.

To clarify this point we conducted a prospective longitudinal study in community-based subjects with CKD.

Baseline characteristics of the study population

		Gender-specific quartiles of serum uric acid (mg/dL)				
	Total subjects	Q1 (M ≦ 5.7, W ≦ 4.5)	Q2 (M 5.8-6.5, W 4.6-5.2)	Q3 (M 6.6-7.4, W 5.3-6.0)	Q4 (M ≧ 7.5, W ≧ 6.1)	p-value
Number	40832	10498	10307	10276	9751	
Men (%)	51.8	50.3	53.6	52.1	51.1	
Age (year)	66.1 ± 6.9	65.7 ± 7.2	66.3 ± 6.8	66.3 ± 6.7	66.1 ± 6.9	<0.01
Smoker (%)	12	12.3	11.9	11.6	12	0.48
Alcohol (%)	44.1	40.7	43.6	46.2	46.0	<0.01
Obesity (%)	35.2	26.1	31.4	37.5	35.2	<0.01
eGFR (mL/min/1.73 m ²)	57.3 ± 13.8	61.4 ± 16.3	57.8 ± 12.5	56.4 ± 12.5	53.2 ± 12.2	<0.01
Proteinuria (%)	28.6	36.1	26.6	24.9	26.6	<0.01
Body mass index (kg/m²)	24.0 ± 3.5	23.2 ± 3.3	23.7 ± 3.3	24.3 ± 3.6	25.0 ± 3.6	<0.01
Systolic BP (mmHg)	131.9 ± 18.0	129.9 ± 18.2	131.1 ± 17.9	132.5 ± 17.7	134.2 ± 17.9	<0.01
Diastolic BP (mmHg)	77.5 ± 10.9	76.2 ± 10.8	77.2 ± 10.8	78.0 ± 10.7	78.8 ± 11.1	<0.01
HbA1c (%)	5.4 ± 0.8	5.5 ± 1.1	5.4 ± 0.8	5.4 ± 0.7	5.4 ± 0.7	<0.01
Triglyceride (mg/dL)	130.6 ± 86.9	114.9 ± 75.1	124.2 ± 77.2	132.7 ± 83.8	151.9 ± 105.4	<0.01
LDL-cholesterol (mg/dL)	126.1 ± 31 .0	123.8 ± 30.1	125.5 ± 30.1	127.3 ± 30.8	127.7 ± 32.3	<0.01
HDL-cholesterol (mg/dL)	58.9 ± 15.8	61.3 ± 16.3	59.7 ± 16.0	58.3 ± 15.3	56.3 ± 15.0	<0.01
Hypertension (%)	56.6	48.3	54.3	58.5	66.1	<0.01
Diabetes (%)	16.2	20.0	15.2	14.1	15.4	<0.01
Dyslipidemia (%)	60.1	53.3	57.6	61.8	68.3	<0.01

• During the follow-up period, 720 all-cause deaths, including 153 cardiovascular deaths were documented.

The incidence rate of all-cause deaths showed a J-shape curve with the increase in uric acid levels at baseline (the lowest [4.2 per 1,000 personyear] in the 3rd quartile of uric acid [Q3: men, 6.6–7.4 mg/dL; women, 5.3– 6.0 mg/dL] and the highest [6.3] in the 4th quartile [Q4: men, \geq 7.5 mg/dL; women, $\geq 6.1 \text{ mg/dL}$) (P for trend <0.01).

In the Cox proportional hazard analysis, the adjusted hazard ratio (HR) for the incidence of all-cause deaths was significantly increased in Q4, compared with Q3 (HR 1.42, 95% confidence interval 1.14-1.78, P < 0.01). No significant interaction was observed between uric acid and all confounders.

 \bullet In subgroup analyses, a high HR in Q4 for mortality was observed,

especially in young subjects (<65 years), and subjects with diabetes, proteinuria, and eGFR <45 (HR 1.70–1.92).

The association of serum uric acid levels with cardiovascular mortality showed a similar trend to that with all-cause mortality, however it did not reach a statistical significance.

The quartiles of serum uric acid (mg/dL)

The quartiles of serum uric acid (mg/dL)

The quartiles of serum uric acid (mg/dL)

Subgroup analysis :

the effect of serum uric acid on the incidence of all-cause deaths

Odds ratio (95% confidence interval) for all-cause deaths in Q4 compared with Q3

Conclusions

This study showed that serum uric acid level is significantly associated with the mortality in the community-based population with CKD, and that this association was partially modulated by the characteristics of subjects such as proteinuria and comorbidities.

* Disclosures:

All the authors have declared no competing of interest.

