

Impaired skeletal muscle oxygen saturation response is associated with self-reported fatigue in CKD: a possible physiological mechanism for fatigue?

White AEM¹, O'Sullivan TF¹, Gould DW¹, Watson EL¹, Smith AC^{1,2}, Wilkinson TJ¹

¹Leicester Kidney Exercise Team, Department of Infection, Immunity and Inflammation, UNiversity of Leicester, UK, ²John Walls Renal Unit, University Hospitals of Leicester Trust, UK

Introduction

- Chronic Kidney Disease (CKD) = inability of the kidney/s to adequately filter blood & produce urine. Leading to a \downarrow physical function^[1], exercise capacity^[1], & \uparrow fatigue^[2]
- Fatigue leads to ψ quality of life ^[3] & inability to complete activites of daily living (ADL)^[4]
- Possible physiological mechanisms for fatigue can be categorised

Results

Psychological: e.g. depression^[3]

Physiological: e.g. anaemia^[2,3], inflammation^[3], reduced physical activity^[5]

- **Poor supply/utilisation of oxygen (O₂) in skeletal muscle (SM)** may contribute to feelings of fatigue ^[2], particularly during ADL where these SM are used (e.g. leg SM during walking)
- The % of oxyhaemoglobin & oxymyoglobin within SM capillaries (SMO₂%) can be determined by transcutaneous **non-invasive near-infrared spectroscopy (NIRS)**^[6]
- **Time to reach minimum SMO**₂% during graded aerobic exercise is a **key outcome**, as it has been **associated with impaired oxidative phosphorylation**^[7]
- No studies have investigated changes in O₂ kinetics during exercise in CKD

Aim

To explore changes in skeletal muscle oxygen saturation (SMO₂%) during incremental exercise & the association with fatigue in non-anaemic, non-dialysis CKD patients

Hypothesis

Fatigue is associated with quicker SMO₂% **desaturation** during walking

Participants

- **11 CKD patients** (5 $\stackrel{\bigcirc}{+}$, age: 55±16 yrs, eGFR: 62±21 ml/min/1.73m², BMI: 27±6 kg/m²) were tested
- **Exclusion criteria:** <18 years, pregnancy, prior kidney transplant within 6 months, visual

time to minimum SMO₂%) was also

associated with increased physical &

functional fatigue (lower TOI score)

or hearing impairment, & inability to give informed consent

Methods

Everyday general fatigue was assessed by the validated Functional Assessment of **Chronic Illness Therapy Fatigue (FACIT-F)** questionnaire **(higher score = lower fatigue)**

Total FACIT-F score **(TFACIT-F)** is scored /160

Trial Outcome Index score (TOI) is a subscale used to quantify fatigue associated with physical & functional outcomes & scored /108

- Patients wore the NIRS device (BSXInsight, **USA**) on their **dominant leg** (Fig 1)
- NIRS uses infrared light (700-1000nm) to quantify the O_2 saturation of haemoglobin & myoglobin in the vascular bed of SM^[7]
- The gastro-soleus complex was chosen as this is a large SM group used whilst walking
- SMO₃% was measured every second. An average **3 minute baseline recording** was acquired at rest in a seated upright position

Discussion

- Patients who experience greater perceptions of general fatigue have a more rapid drop in SMO₂% during a subsequent walking test. These patients may find ADL more tiring & difficult
- Mitochondria within SM must efficiently utilise O_2 (via oxidative phosphorylation) to produce energy (adenosine triphosphate) needed for SM contraction^[7,8]
- A reduced number & dysfunction of the mitochondria has been reported in CKD^[8]
- Mitochondrial dysfunction may cause an **impairment** to **oxidative phosphorylation** & energy production resulting in a reduced exercise capacity, walking ability & ADL completion

Fig 4. TFACIT score vs time to min.SMO₂%

Patients who experience increased fatigue (lower TFACIT-F score) reached minimum SMO₂% quicker during walking (i.e. quicker deoxygenation)

Walking capacity was assessed by the Incremental Shuttle Walk Test (ISWT). Patients walked a 10m course (Fig.2) at a pace controlled by an audible bleep. There are 12 levels; an increase in level requires an increase in pace (+0.17m/s)

All data are expressed as mean \pm standard deviation. Time to min. SMO₂% & min. SMO₂% were calculated. Statistical analysis was performed by linear regression & Pearson's correlation within SPSS 24 (SPSS Inc., USA). Significance= p<0.05, mean= X, change= Δ

- Patients may experience this reduced walking capacity as fatigue in everyday life
- Further research is needed to explore other potential mechanisms

Clinical implications

- We have shown that NIRS can be used to evaluate SMO₂ kinetics & walking performance in CKD. This may be a **possible physiological mechanism of fatigue**
- This non-invasive technique could be used to explore SMO₂ kinetics in other **conditions** with increased perception of fatigue
- In the future, the effects of exercise rehabilitation programmes on fatigue & SMO₂%, should be **assessed using NIRS**

References

[1] Padilla, J. et al. 2008, Journal of nephrology, 21(4), pp.550-559; [2] Macdonald, J.H. et al. 2012, American Journal of Kidney Diseases, 60(6), pp.930-939; [3]Jhamb, M et al. 2008, American Journal of Kidney Diseases, 52(2), pp.353-365 [4] Bonner, A et al. 2010, Journal of Clinical Nursing, 19(21-22), pp.3006-3015; [5] Brunier, G.M. and Graydon, J., 1993, ANNA Journal/American Nephrology Nurses' Association, 20(4), p.457; [6] Boushel, R et al. 2001, Scandinavian Journal of Medicine & Science in Sports, 11(4), pp.213-222; [7] Grassi, B. and Quaresima, V., 2016, Journal of Biomedical Optics, 21(9), pp.091313-091313; [8] Yazdi, P.G et al. 2013, International Journal of Clinical and Experimental Medicine, 6(7)

