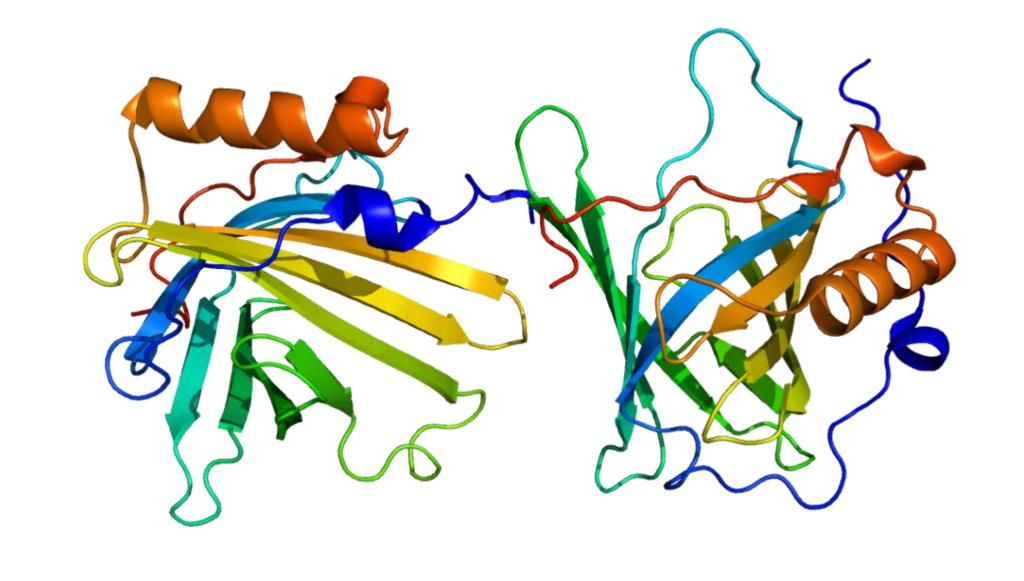


The investigation of urinary neutrophil gelatinaseassociated lipocalin concentration stability

E. Bogdanova ¹, O. Galkina ¹, I. Zubina ¹, A. Anpilova ¹, L. Khorovskaya ² and V. Dobronravov ¹

¹Pavlov First Saint Petersburg State Medical University; ²North-Western State Medical University named after I.I. Mechnikov

INTRODUCTION AND AIMS


Urinary neutrophil gelatinase-associated lipocalin (uNGAL) is a reliable biomarker for early diagnosis of acute kidney injury. In chronic kidney disease uNGAL level is associated with tubular dystrophy. The aim of our study was to investigate short-term and long-term stability of uNGAL concentration for transportation of samples to a specialized laboratories.

METHODS

Levels of uNGAL were measured by CMIA on ARCHITECT i system (Abbott Laboratories, USA) in one-time urine sample of 20 patients with kidney damage. Samples were transported to the laboratory on ice within 15 minutes after collection. Every sample was aliquoted into 7 tubes. One portion was measured immediately, six another - stored at the temperature -22 °C, +4 °C and +22 °C during 4 hours, 24 hours, 48 hours and 7 days (table 1).

Table 1. Preanalytical phase

Protocol	N	Transportation (min; °C)	Store conditions (h/d; °C)	Centrifugation (min; °C; g)	
1 (control)	20		Cito!		
2	20		4 h; +22		
3	20		24 h; +22		
4	20	15; +4	24 h;+4	10; +4; 1000	
5	20		48 h; +4		
6	20		7 d; +4		
7	20		7 d; –22		

Results were compared in duplicates for 20 patients per each temperature and time of storage and estimated in pairs using Dahlberg formula. The average, within- and between series imprecisions were calculated. Statistical significance was estimated with the Student paired t-test.

RESULTS

Within series CV% was in about 1.6-6.1% depending on concentration of uNGAL without significant differences of storage conditions (p>0.2). The concentrations of uNGAL in samples stored for four hours at +22 °C, for two days at +4 °C, and one week at -22 °C did not differ compared with results of uNGAL measured immediately (p>0.11) (table 2). The levels of uNGAL in samples stored for two days at +22 °C and for seven days at +4 °C were different from initial concentration (p<0.035) (table 2).

Table 2. Evaluation of stability of uNGAL at different storage conditions (Dahlberg formula)

Protocol	2	3	4	5	6	7
Store conditions	4 h;+22 °C	24 h; +22 °C	24 h;+4 °C	48 h;+4 °C	7 d;+4 °C	7 d;-22 °C
Concentration variation, %	5,0	36,2	4,0	5,2	17,2	3,9
p (Dahlberg formula)	0,15	0,035	0,35	0,25	0,029	0,11

CONCLUSION

Concentrations of uNGAL are stable for four hours at +22° C, for two days at +4°C, and at least one week at -22°C, that allows long distance transport of biological samples to specialized laboratories whereby the study may become available to a wide range of clinical departments.

