

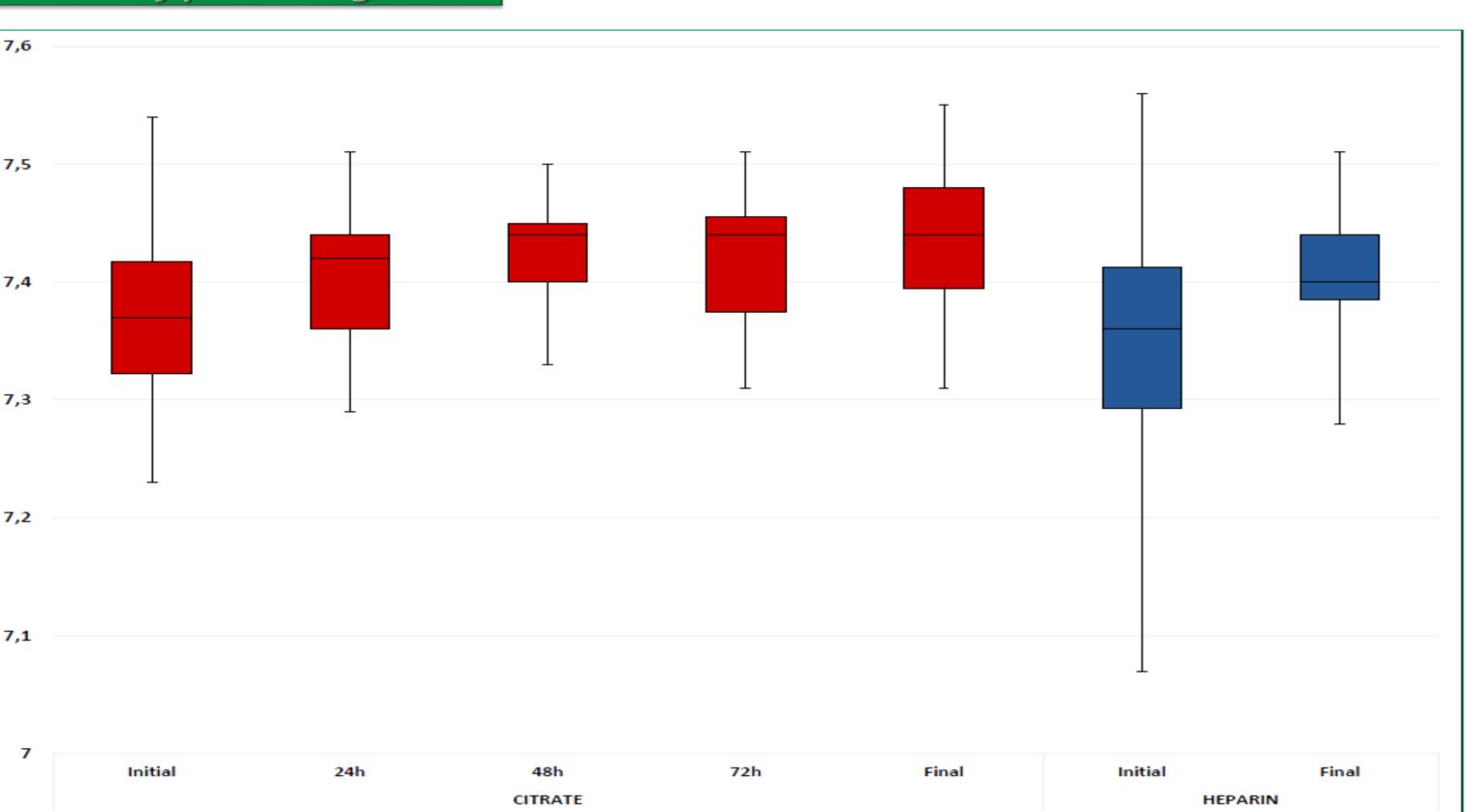
Clinical Impact of Regional Citrate Anticoagulation in Continuous Renal Replacement Therapy in Critically III Patients

Lida Rodas¹, María Huguet¹, Miquel Blasco¹, Luis F Quintana¹, Jordi Mercadal², José Tomás², Irene Rovira² Esteban Poch¹

1-Nephrology Department, Hospital Clínic, Barcelona

2- Intensive Care Unit Department, Hospital Clínic, Barcelona

Background


Regional citrate anticoagulation (RCA) is being increasingly used in continuous renal replacement therapy (CRRT) as an alternative to heparin due to advantages concerning filter lifetime and no-systemic anticoagulation.

Despite the potential advantages, complex metabolic control to avoid side-effects have been associated to RCA, generating discrepancies about its introduction in everyday practice.

Demographic description

Parameter	CVVHDF- citrate group	CVVHDF- heparin group	p value	
Number of patients (n)	27	27		
Age (years)	68 ± 10	71 ± 12	0.439	
Gender (n, male)	19 (70%)	19 (70%)	1.00	
Charlson index at initiation of CRRT	4.9 ± 1.1	5.1 ± 1.8	0.564	
APACHE II score at initiation of CRRT	22 ± 5	25 ± 6	0.072	
SOFA score at initiation of CRRT	11 ± 2	10 ± 2	0.238	
Haemoglobin at initiation of CRRT (g/dL)	97 ± 14	95 ± 15	0.669	
Platelet count at initiation of CRRT (10^9/L)	134 ± 83	166 ± 92	0.181	
Serum Na ⁺ at initiation of CRRT (mEq/L)	138 ± 4	136 ± 6	0.268	
Serum K ⁺ at initiation of CRRT (mEq/L)	4.2 ± 0.7	4.5 ± 0.9	0.123	
Creatinine at initiation of CRRT (mg/dL)	3.7 ± 2.6	3.9 ± 2.4	0.719	
Mechanical ventilation (n)	18 (66%)	21 (77%)	0.362	
Antibiotic treatment (n)	25 (92%)	25 (92%)	1.00	
Vasopressors use (n)	27 (100%)	27 (100%)	1.00	
Vascular access				
Femoral access (n)	26 (96%)	23 (85%)	0.204	
Right jugular access (n)	1 (3%)	4 (14%)		
AKI on previous Chronic Kidney Disease	7 (25%)	10 (37%)	0.379	
(n, CKD)				
ICU admission reason	•	•	•	
Postoperative (n)	16 (59%)	13 (48%)		
Cardiovascular cause (n)	10 (37%)	9 (33%)	0.880	
Other reason for ICU admission (n)	1 (3%)	5 (18%)		
AKI	•	•	•	
Ischemia (n)	17 (63%)	15 (55%)	0.625	
Sepsis and mixed causes (n)	10 (37%)	12 (44%)		

Course of pH during CRRT

References

Methods


Observational retrospectively study the introduction of RCA in continuous veno-venous hemodiafiltration (CVVHDF) with a concentrated citrate solution in a Tertiary University Hospital.

Evaluate the impact of the technique on efficacy and safety, compared to well-established systemic heparin. Performed with patients receiving CVVHDF with RCA between January 2013 and May 2016. As controls, heparin-treated patients matched by age, sex and disease severity treated in the preceding year were selected as historic controls. Filter lifetime, number of filters used, haemorrhagic complications and metabolic complications (hypernatremia, alkalosis, calcium disturbances) were recorded.

Results

Efficacy and safety of RCA compared to heparin	CVVHDF- citrate group	CVVHDF- heparin group	p value
Elective circuit interruption of the fist filter (n)	14 (51%)	6 (22%)	
Interruption due to coagulation of the circuit (n)	9 (33%)	18 (66%)	0.013
Other causes of circuit interruption (n)	4 (14%)	3 (11%)	
First filter life-time (hours)	55.1 ± 21.8	38.8 ± 24.8	0.004
Number of filters in 72h	1.59 ± 0.7	2.48 ± 1.3	0.004
Bleeding (n)	4 (14%)	10 (37%)	0.062
Transfusion requirements <2 RBCC* (n)	20 (74%)	12 (44%)	0.027
Transfusion requirements ≥2 RBCC* (n)	7 (25%)	15 (55%)	0.027
*RBCC: red blood cell concentrate		•	•

Survival in hours of first filter

Conclusion

These results suggest that the implementation CVVHDF with RCA using concentrated citrate solutions prolongs filter lifetime, achieves a longer effective hemodiafiltration time and is a safe and feasible method

¹⁻ Schilder L, Numohamed SA, Bosch FH, et al. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit Care. 2014; 18(4):472..

²⁻ Hafner S, Sathl W, Fels T, et al. Implementation of continuous renal replacement therapy with regional citrate anticoagulation on a surgical and trauma intensive care unit: impact on clinical and economic aspects —an observational study. J Intensive Care. 2015;3(1):35.