THE URINARY SODIUM AND POTASSIUM EXCRETION AFTER PHYSICAL EXERCISE

Wojciech Wołyniec ${ }^{1}$, Wojciech Ratkowski², Katarzyna Kasprowicz³, Robert Urbanski², Marcin Renke ${ }^{1}$

${ }^{1}$ Department of Occupational, Metabolic and Internal Diseases, Medical University of Gdansk, Poland. ${ }^{2}$ Department of Athletics, Gdansk University of Physical Education and Sport, Gdansk, Poland,
${ }^{3}$ Department of Physiology, Gdansk University of Physical Education and Sport, Gdansk, Poland.

INTRODUCTION

The dehydration, hyperkalemia, hypo- and hypernatremia are observed after a long exercises like ultramarathon. These abnormalities in subjects with normal kidney function are relatively rare.
The activation of renin-angiotensin-aldosterone, vasopressin, and sympathetic systems help to preserve electrolyte balance during a long exercise. In presented study we measured sodium, potassium, creatinine, urea and uric acid in blood and urine after every 25 km of 100 km run to establish changes in the fractional excretion of electrolytes and metabolites after ultramarathon.

METHODS

20 healthy, amateur runners (males, mean age
40.75 years, mean weight $76,87 \mathrm{~kg}$) took part in the 100 km run on the track.
Blood and urine were collected before run, after every
25 km and 12 hours after run (a rest).
Creatinine clearance (CrCl) was calculated from the timed urine collections.
Urine Na to K ratio were calculated Fractional excretion (Fe) of sodium, potassium, urea and uric acid during the race were calculated using the
formula: Fractional excretion of parameter $=$
[(parameter in urine x creatinine in serum) / (parameter in serum x creatinine in urine)].

RESULTS

17 runners completed the study.

The significant increase of creatinine, urea and uric acid was observed after 100 km ($p<0.05$).
Na and K slightly increased during the run. There was a significant decreased of sodium after the rest ($p<0.05$). The increase of FeK as well as decrease of FeNa and Na / K ratio were observed during the run ($p<0.05$).
The low Na / K ratio and increased FeK were observed also during the rest (12 hours after the run was completed). FeUA remain stable during and after the run.

CONCLUSIONS

The deep changes in electrolytes excretions were observed during the study. There was no cases of severe serum electrolyte abnormalities, probably because all runners were well trained and very experience.
The most important finding is that some abnormalities were still found after the 12 hours rest. It is of special interest for those runners who repeatedly performed intensive exercise day by day. These subjects are of the high risk of hypokalemia.

