

ENZYMATIC DIGESTION OF THE ENDOTHELIAL GLYCOCALYX IS REGULATED WWU BY THE TIE2 RECEPTOR AND ITS LIGANDS ANGIOPOIETIN-1 AND -2

Alexander Lukasz^{1,2}, Bettina Hesse^{1,2}, Carina Hillgruber³, Kristina Kusche-Vihrog², Hermann Pavenstädt¹, Alexandros Rovas¹, Tobias Goerge³, Philipp Kümpers¹ ¹Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany ²Institute of Physiology II, University Hospital Münster, Robert-Koch-Straße 27b, 48149 Münster, Germany ³Department of Dermatology, University Hospital Münster, Von-Esmarch-Straße 58, 48149 Münster, Germany

Introduction

Angiopoletin-1 and -2, two antagonistic ligands of the endothelium-stabilizing receptor Tie2, regulate vascular permeability and leukocyte transmigration through the endothelium. We have previously shown that administration of Tie2 agonistic molecules acting like Angpt-1, which counteract the devastating effects of Angpt-2, prevent ischemic and septic acute kidney injury. This effect is probably mediated through endothelial-cell contraction and junctional disintegration. Here we hypothesized that Angpt-2 might mediate the breakdown of the endothelial glycocalyx (eGC), a carbohydrate-rich vasoprotective layer lining the luminal surface of the endothelium, and that Angpt-1 can prevent this process.

ce

[pN]

Figure 1: Schematic view of Angiopoietin-1 and -2 signalling

Methods surface approach eGC, plasma membrane & cortical actin web indentation eGC indentatio ("1st slope") polystyrene - 100.0 ਰ੍ sphere (d = 10 µm) plasma membrane nucleus endothelial cell monolaye - 0.0 GC thickness (304.5 nm) -400.0 -200.0 200.0 400.0 0.0 indentation depth [nm] direction of surface approach

Figure 2: Atomic Force Microscopy (AFM)

The AFM tip (cantilever) travels vertically towards the endothelial surface and deflects upon contact to the endothelial glycocalyx (eGC). The deflection is measured as a laser beam reflected from the back of the cantilever. The resulting curve is transformed into a force-versus-distance curve where the slope directly reflects the stiffness (expressed in pN/nm). The first slope indicates the very first layer, the (eGC) and the second indicates the plasma membrane and the cortical actin web.

Figure 5: Angpt-2 is a negative regulator of the eGC *in vitro*

Glycocalyx thickness of living cells measured via AFM, immunofluorescence images and fluorescence intensity analysis of heparan sulfate (major constituent of eGC) staining after incubation with Angpt-2 (100 ng/ml)

300 - ·	n.s.	300 - T	p<0.0001	p<0.0001	Figure	6:	Angpt-2-

Figure 3: Immunofluorescence staining

Heparan sulfates (HS) were stained with a mouse monocloncal anti-HS antibody after Angpt-2 treatment.

Ο

Blue orban

Ž 0.10-

Heparanase inhibition NAH with Angpt-2 prevents mediated increase of permeability and oedema formation *in vivo* Representative images of murine back skin with Evans Blue leakage at injection sites of PBS (control) or histamine (10 100 μ M). Bars and showing Evans blue dye back skin content of biopsies after mediator treatment.

cells were

(heparanase

Figure 4: Schematic view of in vivo permeability assay (modified Miles assay)

Mice received Angpt-2 (65ng/g mouse), Evans Blue (150 µl, 0,5% in PBS) and 150 µg of the Heparanase inhibitor NAH or an equivalent volume of solvent (PBS) intravenously. Evans Blue facilitates visualization and quantification of vascular leakage.

histamine

Evans [Abs(0	•				
0.00-		<u> </u>	I	I				
Angpt-2	+	+	+	+				
Solvent	+	-	+	-				
NAH	-	+	-	+				
Histamine i.d.								
[10µM]	+	+	-	-				
[100µM]	-	-	+	+				

<u>}</u>

Conclusion

- → Angiopoletin-2 contributes to eGC breakdown via release of eGC-digesting heparanase
- → Angiopoietin-2 mediated eGC breakdown contributes to vascular leakage in vivo
- -> Protection of the eGC might become an important treatment goal to prevent vascular leakage in critical care nephrology

