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Introduction o ®»® ~

(Pericytes)
P13 = phosphatidylinositol 3-kinase;
Akt = protein kinase B

NFkB = nuclear factor kappa B

Angiopoietin-1 and -2, two antagonistic ligands of the endothelium-stabilizing receptor Tie2, uﬂ\m HM f me IJ" MJIIIIITtleIZIIJIII f{ul th ”Nm
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endothelial glycocalyx (eGC), a carbohydrate-rich vasoprotective layer lining the luminal bti_apomoﬁc i mators o
surface of the endothelium, and that Angpt-1 can prevent this process.. NS - N\C(prwiaky (mhivitionneke) ) N\
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Figure 1: Schematic view of Angiopoietin-1 and -2 signalling
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Figure 2: Atomic Force Microscopy (AFM) sulfate (major constituent of eGC) staining after incubation with Angpt-2 (100 ng/ml)
The AFM tip (cantilever) travels vertically towards the endothelial
surface and deflects upon contact to the endothelial glycocalyx
(eGC). The deflection is measured as a laser beam reflected from
the back of the cantilever. The resulting curve is transformed into a 300 300 p<0.0001 p<0.0001

Figure 6: Angpt-2-
mediated breakdown of
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force-versus-distance curve where the slope directly reflects the
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Conclusion

- Angiopoietin-2 contributes to eGC breakdown via release of eGC-digesting heparanase
- Angiopoietin-2 mediated eGC breakdown contributes to vascular leakage in vivo

- Protection of the eGC might become an important treatment goal to prevent vascular leakage in critical care nephrology
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