CLINICAL SIGNIFICANCE OF GENETIC VARIANTS IN PATIENTS WITH C3 GLOMERULOPATHIES

Aysegul ORUC¹, Abdulmecit YILDIZ¹, Berna VURUSKAN², Afig BERDELI³, Mahmut YAVUZ¹, Kamil DILEK¹, Mustafa GULLULU¹, Alparslan ERSOY¹

1Uludag University Medical Faculty, Nephrology, Bursa, TURKEY, 2Uludag University Medical Faculty, PATHOLOGY, Bursa, TURKEY, 3Ege University, PEDIATRI, Izmir, TURKEY.

OBJECTIVES	METHODS		
C3 glomerulopathies (C3Gs) are a recent disease	Five patients (4 male, 1 female) with kidney		
classification comprising several rare types of	biopsies that fulfilled criteria for C3		
glomerulonephritis (GN), including C3 glomerulonephritis,	glomerulopathy were evaluated. The following		
dense deposit disease and CFHR5 nephropathy. Isolated	tests were performed in all five patients: serum		
C3 deposition within the glomerulus is the defining	C3 and C4 levels, C3 nephritic factor (C3NeF)		
histological criterion for C3Gs. Abnormal regulation of	and genetic screening for CFH, CFI, CFB,		
alternative pathway of complement system due to	CD46, C3, C5, DGKE, CFHR1, CFHR 3,		
hereditary or acquired reasons leads this process.	CFHR5, THBD and ADAMTS13 mutations and		
Although knowledge about C3Gs increases, genetic	risk haplotypes associated with aHUS.		

defects have not been fully elucidated yet. The thrombotic microangiopathies (TMAs) and C3Gs include a spectrum of rare diseases, and they share phenotypic similarities and underlying genetic commonalities. Herein, we reported genetic results associated with atypical hemolytic uremic syndrome (aHUS) and C3Gs and outcomes of 5 patients who had diagnosis of C3Gs.

Demographic / Clinical Characteristics	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	
Gender	Male	Male	Male	Male	Female	
Age (years)	23	26	31	49	23	
Age at biopsy (years)	15	20	22	38	13	
Follow-up (months)	96	78	98	131	112	
Laboratory data at biopsy						
Proteinuria (Up/c) (g/day)	1	6.9	3.6	4	4	
Serum creatinine (mg/dL)	0.8	0.8	3,5	3	0,5	
eGFR (ml/min/1.73 m²)						
Serum C3 levels (mg/dL)	17	14	66		34	
Serum C4 levels (mg/dL)	21	23	26		20	
C3NeF	Positive	Positive			Positive	
Genetic abnormality	None	CFH p.Gln950His C3 p.Ala1286Thr	CFH p.Gln936Asp	CFB p.Leu9His C5 p.Gln1437Asp	CFH p.Asn1050Tyr	
Outcomes	Dialysis	Hemodialysis	Hemodialysis	Hemodialysis	Remission	

with prednisolone, mycophenolate mofetil and 2 had Eculizumab on follow ups. Complete remission was observed in 1 patient who was on prednisolone and MMF treatment. Four of 5 patients were progressed to end stage renal disease in whom 3 of them had renal transplantation and 1 was on peritoneal dialysis. Serum C3 levels were low in all patients, C3Nef was positive in 3 of 5 patients. Demographic and laboratory findings are shown on table. Genetic variants in CFH (patient 2, 3, 5), CFB (patient 4), C5 (patient 4) and C3 (patient 2) genes were demonstrated in 4 of 5 patients.

All patients received immunosuppressive treatment

RESULTS

CONCLUSIONS

REFERENCES:

C3 Gs are a novel disease entity with a high risk of progression to end stage kidney disease. In majority of patients acquired or genetic defects in alternative pathway regulation can be demonstrated. Studies have provided better understanding of genetic relation among aHUS patients whereas knowledge of genetics of C3Gs is not yet fully understood. Pathogenic genetic variants associated with aHUS seem to be genetic drivers of C3Gs among our patients in whom deterioration in kidney function could not be prevented despite immunosuppressive and anti-complement treatment.

182--MP

182--MP

Glomerulonephritis II

Aysegul ORUC

. Barbour T, Pickering M, Cook T (2013) Recent insights into C3 glomerulopathy. Nephrology Dialysis Transplantation 28:1685–1693. doi: 10.1093/ndt/gfs430 2. Fakhouri F, Frémeaux-Bacchi V, Noël L-H, et al (2010) C3 glomerulopathy: a new classification. Nat Rev Nephrol 6:494–499. doi: 10.1038/nrneph.2010.85 3. Noris M, Remuzzi G (2015) Glomerular Diseases Dependent on Complement Activation, Including Atypical Hemolytic Uremic Syndrome, Membranoproliferative Glomerulonephritis, and C3 Glomerulopathy: Core Curriculum 2015. American journal of kidney diseases : the official journal of the National Kidney Foundation 66:359-75. doi: 10.1053/j.ajkd.2015.03.040

