

A Comparison of Circulating Angiogenic Factors with Routine Protein Analytes as Markers of Pre-eclampsia

Nadia Sarween^{1,2}, James Hodson³, Ellen Knox⁴, Tim Plant², Clara Day¹, Mark Drayson² and Graham Lipkin¹

¹ Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK, ²School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK, ³ Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK, ⁴ Department of Obstetrics and Maternal Medicine, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK, ⁴ Department of Obstetrics and Maternal Medicine, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK, ⁴ Department of Obstetrics and Maternal Medicine, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK

Introduction

- An increase in soluble fms-like tyrosine kinase 1 (sFLT-1) and reduction in placental growth factor (PIGF) concentrations have emerged as strong predictors of preeclampsia (PE).¹
- The National Institute of Clinical Excellence (NICE) have recently issued clinical guidelines supporting the use of the sFLT-1:PIGF ratio to help exclude PE in the clinical setting.² However, this test is expensive and currently not adopted in routine clinical practice.
- We have recently reported that PE is characterised by changes in a

Methods

- Serum samples were collected from previously healthy pregnant women admitted with PE (BP >140/90 mmHg & urine protein creatinine ratio >30 mg/mmol) and also healthy pregnant controls.
- Adverse clinical outcome defined as need for maternal and/or neonatal high dependency care, pre-term birth or small for gestational age baby.
- Samples were stored at -20°C and analysed in batch using the Roche Cobas® platform.

group of serum proteins that are relatively cheaply measured in most hospital laboratory services.³

AIMS

- To compare our earlier study immune system markers; serum free light chains (sFLC), IgG, HS-CRP, complement C3 and C4, serum creatinine, Beta-2Microglobulin (B2-M), albumin and uric acid (UA) with sFLT-1 and PIGF concentrations and compare their diagnostic capability to identify PE.
- Comparisons between the PE and control groups were performed Mann-Whitney tests and ROC curves, with Spearman's (rho) correlations used to test for associations between markers.
- Stepwise multivariable binary logistic regression analysis was used to identify factors independently associated with PE. Patient demographic factors and routinely measured tests (serum B2-M, C3, C4, IgG, CRP, UA and creatinine) were initially considered as predictors. These were then expanded to additionally include sFLC with and without the sFLT-1:PIGF ratio.

Results

- Samples from 190 women (83 PE & 107 healthy controls) were analysed.
- The sFLT-1:PIGF ratio was increased in the PE versus control group (median: 68.7 vs.14.0, p<0.001).
- Of the markers considered, the sFLT-1:PIGF ratio was the most strongly associated with PE (AUROC: 0.81, 95% CI 0.74-0.88), followed by B2-M (0.75, 95% CI 0.69-0.82) (*Figure 1*).

Figure 1: AUROC Plot

0.57	

Figure 3: sFLT-1:PIGF, B2-M levels & Clinical Outcome

The sFLT-1:PIGF ratio was positively correlated with serum creatinine (rho:0.448) and B2-M (rho:0.586) (both p<0.001) and negatively correlated with C3 (rho:-0.145, p=0.046) and C4 (rho:-0.311, p=0.001). No significant correlation was observed between sFLT-1:PIGF ratio and sFLC (p=0.060) or IgG (p=0.475) levels (*Figure 2*).

Figure 2: sFLT-1:PIGF Scatterplots

- On multivariable analysis, combining patient demographic factors & routinely measured tests (*Model A*) returned an AUROC for PE of 0.84, which was comparable to the sFLT-1:PIGF ratio in isolation (p=0.329).
- Adding sFLC to the model (*Model B*) caused a non-significant improvement in accuracy (AUROC=0.88, p=0.080), whilst a significant improvement resulted from adding both sFLC and sFLT-1:PIGF (0.91, p=0.003) (*Model C*).

	Model A		Model B		Model C	
	OR (95% CI)	p-Value	OR (95% CI)	p-Value	OR (95% CI)	p-Value
First Pregnancy	6.87 (3.14 - 15.03)	<0.001	7.75 (3.35 - 17.93)	<0.001	7.85 (3.19 - 19.30)	<0.001
Non-White Ethnicity	-	-	3.32 (1.27 - 8.66)	0.014	-	-
Albumin	0.85 (0.76 - 0.96)	0.009	-	-	-	-
Creatinine	1.04 (1.00 - 1.08)	0.037	-	-	-	-
Uric Acid	-	-	1.73 (1.20 - 2.48)	0.003	-	-
lgG	-	-	0.62 (0.48 - 0.81)	<0.001	0.70 (0.54 - 0.92)	0.010
B2M	3.60 (1.46 - 8.88)	0.005	2.37 (0.91 - 6.18)	0.076	-	-
sFLC			1.09 (1.04 - 1.14)	<0.001	1.11 (1.06 - 1.17)	<0.001
SFLT-1:PIGF					1.04 (1.02 - 1.05)	<0.001

 Both sFLT-1:PIGF and B2-M were significantly associated with adverse clinical outcome in women with PE (p≤0.001), but not in the control group (Figure 3).

Conclusions

- We have demonstrated similar diagnostic capability using routinely available laboratory markers compared with the sFLT-1:PIGF ratio in established PE.
- Further work is required to determine whether predictive capability is also similar between the two sets of markers.
- The sFLT-1:PIGF ratio was correlated to B2-M, renal function and complement markers but not with antibody markers.
- sFLC remains independently associated with PE after accounting for anti-angiogenic imbalance, supporting independent disease pathways.

UNIVERSITY^{of} BIRMINGHAM

<u>References</u>

Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive Value of the sFlt-1:PIGF Ratio in Women with Suspected Preeclampsia. The New England journal of medicine. 2016;374(1):13-22.
National Institute for Health and Care Excellence. PIGF-based testing to help diagnose suspected pre-eclampsia (Triage PIGF test Eis-Pr, DELFIA Xpress PIGF 1-2-3 test, and BRAHMS sFlt-1 Kryptor/BRAHMS PIGF plus Kryptor PE ratio). NICE diagnostics guidance [DG23]. May 2016.
Sarween N, Knox E, Day, C, Assi L, Burmeister An, Harding S, Cockwell P, Drayson M and Lipkin G. Fp294serum Free Light Chains: A Novel Biomarker In Pre-eclampsia (Pet). Nephrology Dialysis Transplantation, 2015. 30(suppl 3): p. iii165-iii166.

DOI: 10.3252/pso.eu.54ERA.2017