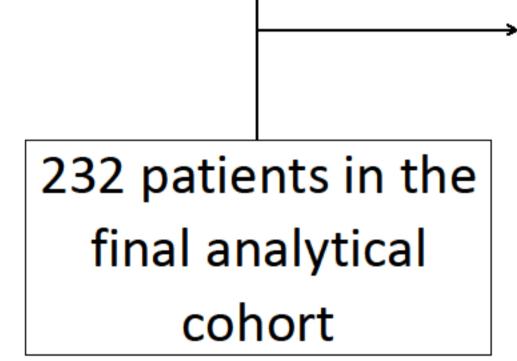


Association Between Intradialytic Central Venous Oxygen Saturation and Mortality

Lili Chan¹, Hanjie Zhang², Anna Meyring-Wösten², Stephan Thijssen², Peter Kotanko^{1,2}. ¹Icahn School of Medicine at Mount Sinai NY, NY, USA, ² Renal Research Institute NY, NY, USA

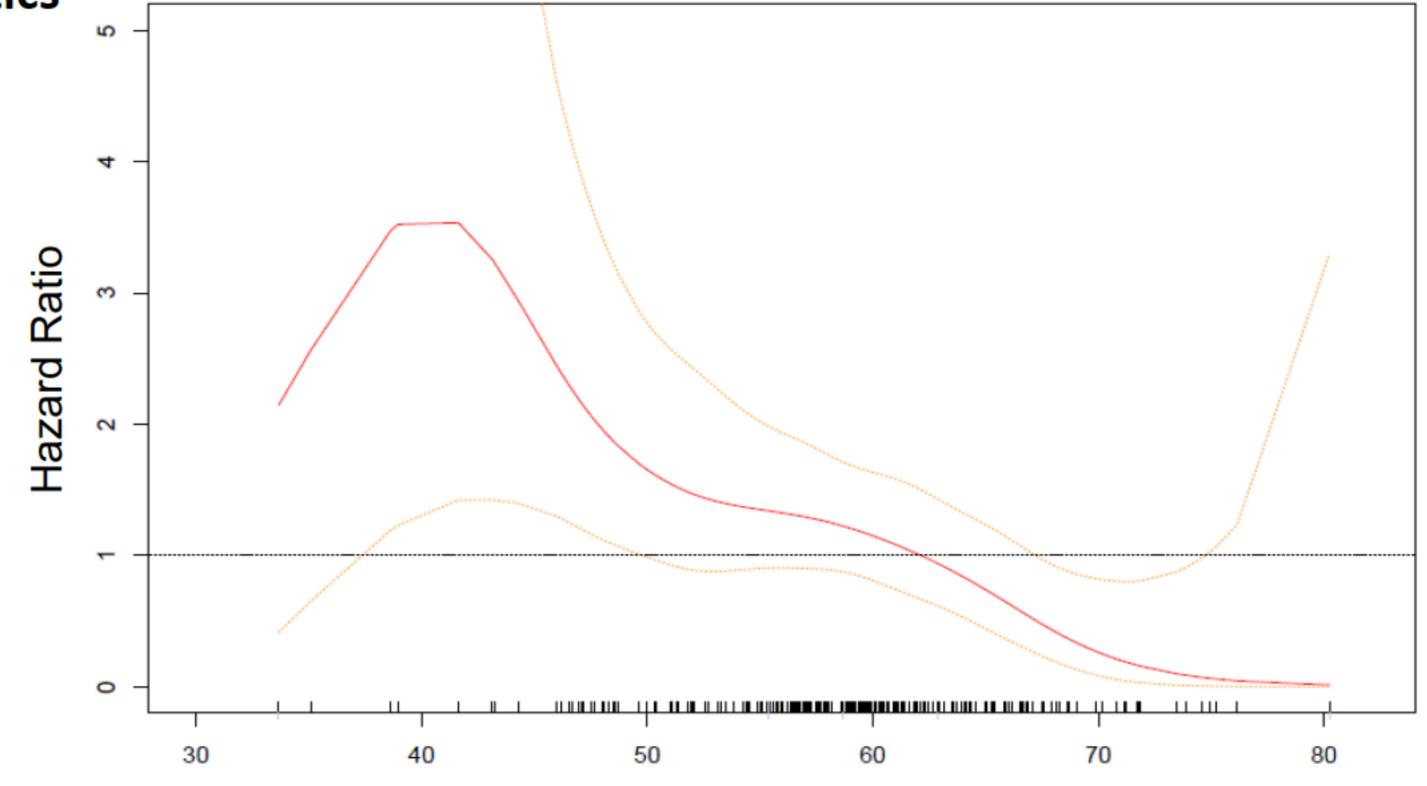
Background	METHODS
 Patients with end stage renal disease on hemodialysis (HD) have an elevated mortality compared to the general 	 Crit-Line Monitor [™] is approved for the measurement of hematocrit, relative blood volume, and oxygen saturation in the extracorporeal dialysis circuit.
 population. The major cause of death is due to 	 It measures oxygen saturation 9,000 times per minute and reports a mean measurement every minute.
cardiovascular disease.	 When connected to a central venous catheter (CVC), the oxygen saturation

- when connected to a central vehous catheter (UVU), the oxygen saturation reported will be the ScvO₂.
- This device was routinely used in 17 Renal Research Institute outpatient HD units.
- delivery, and oxygen consumption.


is a marker of cardiac output, oxygen

Central venous oxygen saturation (ScvO₂)

- In sepsis and post-surgical patients, ScvO₂ levels outside the normal range (60% - 80%) have been associated with morbidity and mortality.
- Review of literature did not reveal any studies examining the association between ScvO₂ and mortality in HD patients.
- Patients with CVC as access were identified between January 2012 to September 2015. Each patient had intradialytic ScvO₂ assessed during a 6 month baseline period, and mortality was assessed for up to 36 months after this baseline period.
- Only patients with at least 10 HD treatments with ScvO₂ measurements during baseline were included in final analysis.
- We excluded treatments with values of <25% as this was incompatible with ۲ life and >85% as these were unlikely to be venous.


 _	
ESI	

579 patients with		Variables	Mean±SD	Variables	Mear
central venous	347 patients were	Number of eligible	26±13.3	Central Venous Oxygen	
catheters between excluded due to 1/1/2012 and having <10 HD		treatments during basel	ine	Saturation [%]	
		(per patient)		Mean ScvO ₂	58.7±
8/31/2015 treatments with intradialytic ScvO ₂	Demographics		Median ScvO ₂	59.1±	
	Age [years]	62.7±15.7	Minimum ScvO ₂	48.4±	
	recordings during	Race [% white]	56	Maximum ScvO ₂	65.2±
232 patients in the	Gender [% male]	48.3	SD ScvO ₂	3.4±	
	Vintage [years]	2.9±4.6	Start ScvO ₂	59.1±	
final analytical		BMI [kg/m ²]	28.1±6.9	End ScvO ₂	57.3±
cohort		Comorbidities [%]		Table 2: Central Venous Oxy	gen
Figure 1. Flow Diagram		Diabetes	59	Saturation Parameters: Va	
-	-	CHF	22.0	were calculated per treatn then averaged per patient	
		COPD	10.3		

Table 1: Patient Characteristics

		Crude ^a		Fully Adjusted ^b	
Outcome	Events	HR (95% CI)	P Value	HR (95% CI)	P Value
All-cause mortality	54	1.06 (1.03 to 1.1)	<0.001	1.04 (1.01 to 1.08)	0.0437

Table 3: Crude and adjusted hazard ratios for all-cause mortality per 1% decrease in ScvO₂

^aUnadjusted model

^bAdjusted for age, gender, chronic obstructive pulmonary disease, congestive heart failure, albumin, hemoglobin, erythropoietin dose, neutrophil to lymphocyte ratio and log vintage

Central Venous Oxygen Saturation [%] Figure 2: Spline analysis of hazard ratio for mortality as a function of mean ScvO₂. Solid line represents HR, the dotted lines the 95% confidence limits.

CONCLUSIONS

- Over 50% of our study population had mean $ScvO_2$ level below what is considered as normal (70%).
- ScvO₂ < 70% has been associated with increased morbidity and mortality in multiple populations including sepsis patients, post-surgical patients and patients with pulmonary hypertension.
- In a fully adjusted model, a 1% decrease in ScvO₂ was associated with a 4% increase in mortality.
- On spline analysis, ScvO₂ <63% was associated with increased mortality, with statistical significance reached at levels <50%.

