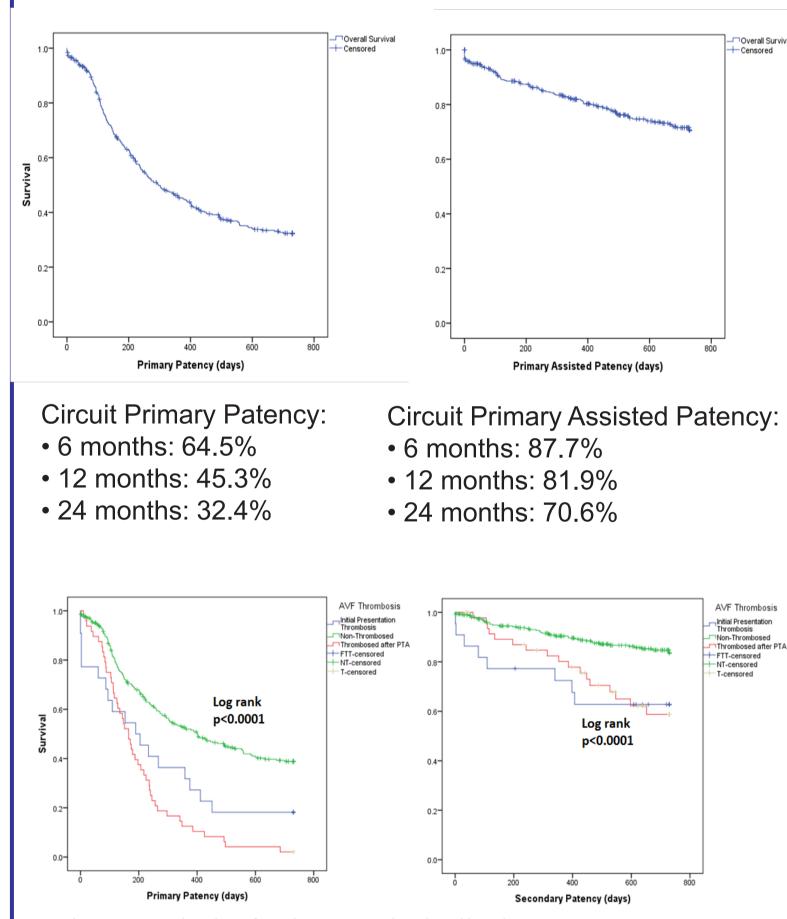

Retrospective Cohort Study of Endovascular Therapy in the Salvage of Failing Arteriovenous Fistulas for Hemodialysis

Karthikeyan Damodharan, Kevin B. C. Khaw, Sum Leong, Apoorva Gogna, Nanda K. Venkatanarasimha, Chow Wei Too, Shaun X. Chan, Farah G. Irani, Ankur Patel1, Kiang Hiong Tay, Bien Soo Tan.

Singapore General hospital, Singapore.

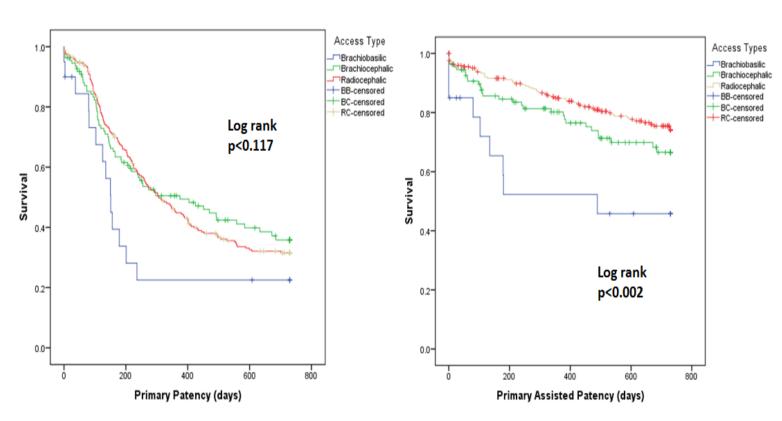

(2) To analyse the patient demographics, medical risk factors and technical factors affecting the outcome of endovascular therapy in our centre.

- Jun 2013
- 2 year follow up
- Endpoints
 - **Primary Patency**
 - **Primary Assisted Patency**
 - Secondary Patency

•Kaplan-Meier analysis and log-rank tests were used to assess AVF survival •Cox regression analysis used to determine hazard ratios of other risk factors •Statistical tests were performed using SPSS20

GRAPHS AND TABLES

RESULTS



Primary Patency

	Univariate Cox Model		Multivariate Cox Model	
	Hazard Ratio (95% Cl)	Sig.	Hazard Ratio (95% CI)	Sig.
AVF Thrombosis	2.51 (1.88-3.36)		· · · · · · · · · · · · · · · · · · ·	.00
AVF Age < 305 Days	1.3 (1.14-1.48)	.000	2.1 (1.59-2.76)	.00
Cephalic Arch Stenosis	1.55 (1.00-2.38)	.047	2.99 (1.73-5.17)	.00
Non-Maturation	1.22 (1.02-1.46)	.029	1.66 (1.15-2.41)	.00
Juxta Anastomotic Stenosis	1.33 (.978-1.80)	.069	1.44 (1.04-2.02)	.03
Age >65	1.3 (1.00-1.68)	.049	1.29 (.990-1.68)	.06
Chinese (vs Non Chinese)	1.35 (.998-1.82)	.051	1.22 (.894-1.65)	.21
Brachiobasilic AVF	1.71 (.987-2.95)	.056	1.41 (.797-2.94)	.23
Lesion Length >2cm vs 2cm or less	1.41 (1.09-1.83)	.009	1.15 (.880-1.51)	.304

- 870 procedures performed for 380 patients
- 59.2% Male, mean age 64.5 years
- Technical Success rate: 91.3%
- Defined as <30% residual stenosis
- Clinical Success rate: 96.4% (Defined as patient

Kaplan Meier Survival Analysis of Initial Presentation Thrombosed (n=22 Thrombosed after initial PTA (n=48) and Non-thrombosed AVFs (n=308)

Kaplan Meier Survival of Radioce	ephalic (n=247), Brach	niocephalic (n=111) an	d Brachoibasilic AVFs (n=20)

Primary assisted patency

	Univariate Cox Model		Multivariate Cox Model	
	Hazard Ratio (95% Cl)	Sig.	Hazard Ratio	Sig.
AVF Thrombosis	10.32 (6.81-15.4)	.000	9.72 (6.13-15.4)	.000
AVF Age < 305 Days	1.36 (904-2.06)	.140	1.45 (.929-2.26)	.101
Cephalic Arch Stenosis	1.68 (3.16-1.66)	.106	1.66 (.758-3.63)	.206
Non-Maturation	1.09 (.606-1.95)	.778		
Juxta Anastomotic Stenosis	0.94 (.792-1.48)	.792		
Diabetes	1.25 (1.02-1.53)	.032	1.05 (.841-1.30)	.686
Brachiobasilic AVF	1.93 (1.22-3.07)	.005	1.75 (.838-3.67)	.136
Lower Cephalic Vein	1.6 (.889-2.87)	.118	1.08 (.762-1.52)	.678
Basilic Vein Lesion	2.08 (.911-4.77)	.082	1.18 (.618-2.25)	.616
Lesion Length >2cm vs 2cm or less	1.32 (.880-1.99)	.179	1.00 (.808-1.25)	.974

undergoing one subsequent successful dialysis) Complication rate: 2.53%

3 major - 2 vessel ruptures, Embolus

Secondary patency

	Univariate Cox Model		Multivariate Cox Model	
	Hazard Ratio (95% CI)	Sig.	Hazard Ratio (95% CI)	Sig.
AVF Thrombosis	2.82 (1.72-4.62)	.000	3.13 (1.88-5.23)	.000
Cephalic Arch Stenosis	1.49 (1.06-2.08)	.020	2.03 (1.37-3.02)	.000
AVF Age (<305 days)	1.73 (1.05-2.84)	.030	1.37 (1.05-1.80)	.019
Previous AVF Revision	1.52 (0.892-2.58)	.124	1.18 (9.895-1.55)	.242

REFERENCES

CONCLUSIONS

AVF thrombosis is most strongly associated with AVF failure Patients with upper arm AVFs, diabetes, and lesion lengths >2cm are most at risk of thrombosis Vessel calibre more significant in lower arm AVFs than upper arm AVFs A targeted approach for these patients to undergo proactive surveillance or adjuvant antiplatelet therapy may increase AVF survival	 Irani FG, Tan BS, TanejaM, Lo R, Tay KH.Hemodialysis Access Interventions: An Asian Perspective. RajanDK (ed.), Essentials of Percutaneous Dialysis Interventions, Springer 2011, Ch21, 379-373 Renaud CJ, HolP, Lee EJC, RoblessPA, VathsalaA.Comparative outcomes of primary autogenousfistulas in elderly, multiethnicAsian hemodialysispatients.J VascSurg. 2012; 56(2): 433–439 Tan TLX, May KK, RoblessPA, HoJP. Outcomes of Endovascular Intervention for Salvage of Failing HemodialysisAccess.Ann VascDis. 2011; 4(2): 87–92. RajanDK, BunstonS, MisraS, Pinto R, LokCE. Dysfunctional autogenoushemodialysisfistulas: outcomes after angioplasty –are there clinical predictors of patency? Radiology. 2004;232(2):508–15. Turmel-Rodrigues L, PengloanJ, BaudinS, et al. Treatment of stenosis and thrombosis in haemodialysis fistulas and grafts by interventional radiology. NephrolDial Transplant. 2000;15(12):2029–36. Wong HL, Tan BS. Retrospective study of endovascular management of central venous occlusive disease related to hemodialysis.Thesis Submission, Duke-NUS Graduate Medical School, 2014 Liang HL, Pan HB, Chung HS, GerLP, Fang HC, Wu TH, Wu MT, Lai PH, Chen CK, Yang CF.Restoration of thrombosedBrescia-Ciminodialysis fistulas by using Percutaneous Transluminal Angioplasty. Radiology. 2002; 223: 339-344 GrayRJ, Martin LG, TrerotolaSO.Reporting standards for Percutaneous Interventions in Dialysis Access. J VascIntervRadiol2003; 14:5433-S442 Yang TY, Cheng HW, WengHH, Chang ST, Chung CM, KoYS.Percutaneous Transluminal Angioplasty for Radial-Cephalic Fistulae with Stenosis at the Arteriovenous Junction.Am J Med Sci. 2012; 343(6): 435–439 Woo SK, WookBP ByungCK.The Primary Patency of Percutaneous Transluminal Angioplasty in HemodialysisPatients With Vascular Access Failure. Korean CircJ. 2011 Sep;41(9):512-517
---	---

