

Simulation Training Reduces Complications during Non-Tunneled Hemodialysis Catheter Insertion

Ru Yu Tan¹, Sheryl Wen Shien Gan¹, Chieh Suai Tan¹.

¹ Department of Renal Medicine, Singapore General Hospital

Background and Objectives

- •Traditional apprenticeship model of teaching in temporary hemodialysis catheter insertion (THDC) can result in propagation of errors and complications.
- •Simulation-based training offers step by step standardization of skills and allow trainees to repeatedly practice invasive procedures in realistic environment prior to performing it on actual patient.
- •We aim to determine whether simulator based mastery learning (SBML) in ultrasound-guided THDC insertion improves success rate and reduce complications rate among nephrology fellows.

Methods

- ■This is an observational cohort study of first-, second- and third year nephrology trainees in a tertiary care teaching hospital from September 2008 to September 2015.
- ■The intervention group or SBML-trained fellows (n=7) received a didactic and hands-on, competency-based simulation training course in ultrasound-guided THDC insertion.
- ■The historical control group or the traditionally trained fellows (n=14), received training through traditional, bedside, apprenticeship model.
- ■The primary outcome was successful THDC insertion and secondary outcome was the complication rates.

Results

- ■923 internal jugular catheters and 1588 femoral catheters were inserted by 21 trainees in the 96-month period.
- ■Successful internal jugular and femoral THDC insertion occurred in 100% of the intervention group vs. 99.7% of the control group (P=0.533) and 99.2% of the intervention group vs. 99.5% of the control group (P=0.509), respectively.
- ■The intervention group reported fewer overall complications, 3.5% vs 7.7% (P=0.010); and fewer arterial puncture 0.3% vs 1.9% (P=0.039) for internal jugular THDC insertion.
- ■The complication of bleeding/hematoma formation was also lower during femoral THDC insertion in the intervention group. (0 vs 1.2%, P=0.007).
- •No significant differences occurred between time to first complications between the two groups in both internal jugular and femoral THDC insertion.

Conclusions

•SBML program was more effective than traditional training in THDC insertion and is associated with decreased procedure-related complications.

Table 1. Baseline Characteristics Data of Traditionally-trained and SBML-trained Nephrology Fellow

	Traditional n = 14	SBML n = 7	P Value	
Age	30.9 (2.6)	30.1 (1.7)	0.485	
Male, n (%)	6 (42.9)	2 (28.6)	0.656	
Chinese, n (%)	12 (85.7%)	7 (100)	0.575	
Local Graduate, n (%)	4 (28.6)	4 (57.1)	0.346	
Post-graduation years	6.1(1.7)	6.0 (1.4)	0.848	

† Mean (SD) unless otherwise specified

Table 2. Rates of Failure and Complications between Traditionally-trained versus SBML-trained Nephrology Fellows

	Internal Jugular Catheter n = 923			Femoral Catheter n = 1588		
	Traditional	SBML	P-value	Traditional	SBML	P-value
Number of catheters, n (%)	581 (62.9)	342 (37.1)		956 (60.2)	632 (39.8)	
Number of catheters per person, n (%)	51.0 (19.6)	32.6 (25.3)	0.093	91.8 (45.3)	54.0 (28.1)	0.064
Successful insertion, n (%)	579 (99.7)	342 (100)	0.533	844 (99.5)	627 (99.2)	0.509
Time to first Complications, days	282.6 (403.0)	143.4 (176.0)	0.475	201.4 (267.6)	114.2 (107.1)	0.459
Overall complications, n (%)	45 (7.7)	12 (3.5)	0.010	110 (13.0)	68 (10.8)	0.226
Obstruction, n (%)	24 (4.1)	10 (2.9)	0.373	67 (7.9)	46 (7.3)	0.693
Hematoma/ Bleeding, n (%)	4 (0.7)	1 (0.3)	0.657	10 (1.2)	0 (0)	0.007
Arterial Puncture, n (%)	11 (1.9)	1 (0.3)	0.039	15 (1.8)	9 (1.4)	0.681
More than one venous site puncture, n (%)	20 (3.4)	8 (2.3)	0.429	72 (8.5)	51 (8.1)	0.849

† Mean (SD) unless otherwise specified

References:

- 1. Barsuk JH, McGaghie WC, Cohen ER, O'Leary KJ, Wayne DB. Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit*. Critical
- Care Medicine. 2009;37(10):2697-701.
 Evans LV, Dodge KL, Shah TD, Kaplan LJ, Siegel MD, Moore CL, et al. Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med. 2010;85(9):1462-9.
- Barsuk JH, Cohen ER, Potts S, Demo H, Gupta S, Feinglass J, et al. Dissemination of a simulation-based mastery learning intervention reduces central line-associated bloodstream infections. BMJ Quality & Safety. 2014;23(9):749-56.

PATIENTS. AT THE HE TOF ALL WE DO.

SingHealth DUKE NUS

ACADEMIC MEDICAL CENTRE