Simulation Training Reduces Complications during Non-Tunneled Hemodialysis Catheter Insertion Ru Yu Tan¹, Sheryl Wen Shien Gan¹, Chieh Suai Tan¹. ¹ Department of Renal Medicine, Singapore General Hospital ### **Background and Objectives** - •Traditional apprenticeship model of teaching in temporary hemodialysis catheter insertion (THDC) can result in propagation of errors and complications. - •Simulation-based training offers step by step standardization of skills and allow trainees to repeatedly practice invasive procedures in realistic environment prior to performing it on actual patient. - •We aim to determine whether simulator based mastery learning (SBML) in ultrasound-guided THDC insertion improves success rate and reduce complications rate among nephrology fellows. #### Methods - ■This is an observational cohort study of first-, second- and third year nephrology trainees in a tertiary care teaching hospital from September 2008 to September 2015. - ■The intervention group or SBML-trained fellows (n=7) received a didactic and hands-on, competency-based simulation training course in ultrasound-guided THDC insertion. - ■The historical control group or the traditionally trained fellows (n=14), received training through traditional, bedside, apprenticeship model. - ■The primary outcome was successful THDC insertion and secondary outcome was the complication rates. # Results - ■923 internal jugular catheters and 1588 femoral catheters were inserted by 21 trainees in the 96-month period. - ■Successful internal jugular and femoral THDC insertion occurred in 100% of the intervention group vs. 99.7% of the control group (P=0.533) and 99.2% of the intervention group vs. 99.5% of the control group (P=0.509), respectively. - ■The intervention group reported fewer overall complications, 3.5% vs 7.7% (P=0.010); and fewer arterial puncture 0.3% vs 1.9% (P=0.039) for internal jugular THDC insertion. - ■The complication of bleeding/hematoma formation was also lower during femoral THDC insertion in the intervention group. (0 vs 1.2%, P=0.007). - •No significant differences occurred between time to first complications between the two groups in both internal jugular and femoral THDC insertion. ### Conclusions •SBML program was more effective than traditional training in THDC insertion and is associated with decreased procedure-related complications. Table 1. Baseline Characteristics Data of Traditionally-trained and SBML-trained Nephrology Fellow | | Traditional
n = 14 | SBML n = 7 | P Value | | |-----------------------|-----------------------|-------------------|---------|--| | Age | 30.9 (2.6) | 30.1 (1.7) | 0.485 | | | Male, n (%) | 6 (42.9) | 2 (28.6) | 0.656 | | | Chinese, n (%) | 12 (85.7%) | 7 (100) | 0.575 | | | Local Graduate, n (%) | 4 (28.6) | 4 (57.1) | 0.346 | | | Post-graduation years | 6.1(1.7) | 6.0 (1.4) | 0.848 | | † Mean (SD) unless otherwise specified Table 2. Rates of Failure and Complications between Traditionally-trained versus SBML-trained Nephrology Fellows | | Internal Jugular Catheter
n = 923 | | | Femoral Catheter
n = 1588 | | | |---|--------------------------------------|------------------|---------|------------------------------|------------------|---------| | | Traditional | SBML | P-value | Traditional | SBML | P-value | | Number of catheters, n (%) | 581
(62.9) | 342
(37.1) | | 956
(60.2) | 632
(39.8) | | | Number of catheters per person, n (%) | 51.0
(19.6) | 32.6
(25.3) | 0.093 | 91.8
(45.3) | 54.0
(28.1) | 0.064 | | Successful insertion, n (%) | 579
(99.7) | 342
(100) | 0.533 | 844
(99.5) | 627
(99.2) | 0.509 | | Time to first
Complications, days | 282.6
(403.0) | 143.4
(176.0) | 0.475 | 201.4
(267.6) | 114.2
(107.1) | 0.459 | | Overall complications, n
(%) | 45
(7.7) | 12
(3.5) | 0.010 | 110
(13.0) | 68
(10.8) | 0.226 | | Obstruction, n (%) | 24
(4.1) | 10
(2.9) | 0.373 | 67
(7.9) | 46
(7.3) | 0.693 | | Hematoma/ Bleeding, n (%) | 4
(0.7) | 1
(0.3) | 0.657 | 10
(1.2) | 0
(0) | 0.007 | | Arterial Puncture, n (%) | 11
(1.9) | 1
(0.3) | 0.039 | 15
(1.8) | 9
(1.4) | 0.681 | | More than one venous site puncture, n (%) | 20
(3.4) | 8
(2.3) | 0.429 | 72
(8.5) | 51
(8.1) | 0.849 | † Mean (SD) unless otherwise specified ## References: - 1. Barsuk JH, McGaghie WC, Cohen ER, O'Leary KJ, Wayne DB. Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit*. Critical - Care Medicine. 2009;37(10):2697-701. Evans LV, Dodge KL, Shah TD, Kaplan LJ, Siegel MD, Moore CL, et al. Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med. 2010;85(9):1462-9. - Barsuk JH, Cohen ER, Potts S, Demo H, Gupta S, Feinglass J, et al. Dissemination of a simulation-based mastery learning intervention reduces central line-associated bloodstream infections. BMJ Quality & Safety. 2014;23(9):749-56. PATIENTS. AT THE HE TOF ALL WE DO. SingHealth DUKE NUS ACADEMIC MEDICAL CENTRE